Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Achilles’ heel of HI virus

08.09.2015

Researchers at the University of Bonn have discovered how cells in the body can detect the genetic material of so-called retroviruses. The pathogen of the immunodeficiency disease AIDS, the HI-1 virus, also belongs to this group. At the same time, the HI virus appears to circumvent this important defense mechanism. The researchers are now presenting their results in the renowned journal "Nature Immunology."

The first line of defense of the immune system against pathogens is innate immunity. It is based on specialized sensor proteins, the receptors. These receptors detect foreign structures, for example, cell wall components of bacteria or also the genetic material of viruses. A cellular molecule known as cGAS acts as a genetic material sensor.


The team: Dr. Thomas Zillinger, Dr. Christoph Coch, Eva Bartok, Steven Wolter, Dr. Anna-Maria Herzner, Dr. Marion Goldeck, Dr. Martin Schlee and Prof. Dr. Gunther Hartmann.

© Foto: Rolf Müller/UKB

When cGAS detects viral DNA, the sensor immediately sounds the alarm. A cascade begins during which the immune system is activated and the cell and its neighbors arm themselves against the viral infection. Scientists at the University of Bonn Hospital have played major roles in earlier works on the exact description of this cascade.

The DNA of many viruses is double-stranded: It consists of two threads wound around each other like two cables twisted together. To date, it has been thought that cGAS can only identify such double-stranded DNA. By contrast, the genetic material of retroviruses such as HIV-1 consists of RNA.

RNA is closely related to DNA, however it is always single-stranded in retroviruses. If retroviruses multiply in human cells, the RNA is "transcribed" into DNA. But this is then also single-stranded. It was an equally large surprise to discover that cGAS is also activated by the HI virus 1.

Twisted DNA

Various working groups have recently provided the first step towards an explanation: They were able to show that single-stranded DNA can form what are known as "hairpin" structures – similar to how a single cable can twist around itself so that it resembles two cables twisted around each other. DNA structures of this type thus form short double strands and these are detected by the cGAS sensor.

"The hairpin structures which can form in the case of HIV-1 are actually too short to be detected by cGAS," says Dr. Martin Schlee. The researcher from the Institute of Clinical Chemistry and Clinical Pharmacology at the University of Bonn Hospital is the senior author of the study.

Together with cooperative partners from Bonn, Munich and Erlangen, his working group was now able to show why it nonetheless worked: in addition to the short, double-stranded piece, cGAS also detects special building blocks in the non-twisted, single-stranded piece, known as guanosines. As a result, the cellular response is significantly increased.

"If we remove the guanosines from these structures, the cell can no longer react to the single-stranded DNA," explains lead author Anna-Maria Herzner. "By contrast, if we add in additional guanosines, cells react more strongly."

How HIV-1 viruses circumvent the immune system

Interestingly, the DNA which develops during the HIV-1 infection is particularly lacking guanosines. "HIV-1 viruses appear to have been selected by the immune system to eliminate guanosines from their DNA," says Prof. Dr. Gunther Hartmann, Director of the Institute of Clinical Chemistry and Clinical Pharmacology as well as spokesperson of the ImmunoSensation excellence cluster. "They may thus be able to partially avoid discovery by the cell."

A new work from the Massachusetts Institute of Technology (MIT) in Boston shows that this DNA detection is actually of major clinical significance. There are people infected with HIV-1 who suppress the virus so well that it can no longer be detected. Certain immune cells of these so-called "elite controllers" accumulate so much HI virus DNA that they can nonetheless be detected – possibly via the guanosines that still remain.

They trigger such a strong immune response that the virus is permanently suppressed. Thus the HIV-1 genetic material appears to also be detected in these immune cells via the mechanism discovered by Dr. Martin Schlee and colleagues.

The participating researchers from Bonn are members of the DFG-funded ImmunoSensation excellence cluster. They additionally work closely together in the German Center for Infection Research (DZIF).

Publication: Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA; Nature Immunology; doi: 10.1038/ni.3267

Media contact information:

Dr. rer. nat. Martin Schlee
Institute of Clinical Chemistry and Clinical Pharmacology
of the University of Bonn Hospital
Tel. ++49-(0)228-28751148
E-Mail: Martin.Schlee@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>