Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Achilles’ heel of HI virus


Researchers at the University of Bonn have discovered how cells in the body can detect the genetic material of so-called retroviruses. The pathogen of the immunodeficiency disease AIDS, the HI-1 virus, also belongs to this group. At the same time, the HI virus appears to circumvent this important defense mechanism. The researchers are now presenting their results in the renowned journal "Nature Immunology."

The first line of defense of the immune system against pathogens is innate immunity. It is based on specialized sensor proteins, the receptors. These receptors detect foreign structures, for example, cell wall components of bacteria or also the genetic material of viruses. A cellular molecule known as cGAS acts as a genetic material sensor.

The team: Dr. Thomas Zillinger, Dr. Christoph Coch, Eva Bartok, Steven Wolter, Dr. Anna-Maria Herzner, Dr. Marion Goldeck, Dr. Martin Schlee and Prof. Dr. Gunther Hartmann.

© Foto: Rolf Müller/UKB

When cGAS detects viral DNA, the sensor immediately sounds the alarm. A cascade begins during which the immune system is activated and the cell and its neighbors arm themselves against the viral infection. Scientists at the University of Bonn Hospital have played major roles in earlier works on the exact description of this cascade.

The DNA of many viruses is double-stranded: It consists of two threads wound around each other like two cables twisted together. To date, it has been thought that cGAS can only identify such double-stranded DNA. By contrast, the genetic material of retroviruses such as HIV-1 consists of RNA.

RNA is closely related to DNA, however it is always single-stranded in retroviruses. If retroviruses multiply in human cells, the RNA is "transcribed" into DNA. But this is then also single-stranded. It was an equally large surprise to discover that cGAS is also activated by the HI virus 1.

Twisted DNA

Various working groups have recently provided the first step towards an explanation: They were able to show that single-stranded DNA can form what are known as "hairpin" structures – similar to how a single cable can twist around itself so that it resembles two cables twisted around each other. DNA structures of this type thus form short double strands and these are detected by the cGAS sensor.

"The hairpin structures which can form in the case of HIV-1 are actually too short to be detected by cGAS," says Dr. Martin Schlee. The researcher from the Institute of Clinical Chemistry and Clinical Pharmacology at the University of Bonn Hospital is the senior author of the study.

Together with cooperative partners from Bonn, Munich and Erlangen, his working group was now able to show why it nonetheless worked: in addition to the short, double-stranded piece, cGAS also detects special building blocks in the non-twisted, single-stranded piece, known as guanosines. As a result, the cellular response is significantly increased.

"If we remove the guanosines from these structures, the cell can no longer react to the single-stranded DNA," explains lead author Anna-Maria Herzner. "By contrast, if we add in additional guanosines, cells react more strongly."

How HIV-1 viruses circumvent the immune system

Interestingly, the DNA which develops during the HIV-1 infection is particularly lacking guanosines. "HIV-1 viruses appear to have been selected by the immune system to eliminate guanosines from their DNA," says Prof. Dr. Gunther Hartmann, Director of the Institute of Clinical Chemistry and Clinical Pharmacology as well as spokesperson of the ImmunoSensation excellence cluster. "They may thus be able to partially avoid discovery by the cell."

A new work from the Massachusetts Institute of Technology (MIT) in Boston shows that this DNA detection is actually of major clinical significance. There are people infected with HIV-1 who suppress the virus so well that it can no longer be detected. Certain immune cells of these so-called "elite controllers" accumulate so much HI virus DNA that they can nonetheless be detected – possibly via the guanosines that still remain.

They trigger such a strong immune response that the virus is permanently suppressed. Thus the HIV-1 genetic material appears to also be detected in these immune cells via the mechanism discovered by Dr. Martin Schlee and colleagues.

The participating researchers from Bonn are members of the DFG-funded ImmunoSensation excellence cluster. They additionally work closely together in the German Center for Infection Research (DZIF).

Publication: Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA; Nature Immunology; doi: 10.1038/ni.3267

Media contact information:

Dr. rer. nat. Martin Schlee
Institute of Clinical Chemistry and Clinical Pharmacology
of the University of Bonn Hospital
Tel. ++49-(0)228-28751148

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>