Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If your systolic stinks, 'rotten egg' gas may be why

27.10.2008
Researchers discover hydrogen sulfide is a major regulator of blood pressure

Anyone with a nose knows the rotten-egg odor of hydrogen sulfide, a gas generated by bacteria living in the human colon. Now an international team of scientists has discovered that cells inside the blood vessels of mice — as well as in people, no doubt — naturally make the gassy stuff, and that it controls blood pressure.

Having discovered that hydrogen sulfide, or H2S, is produced in the thin, endothelial lining of blood vessels, the researchers, including scientists from Johns Hopkins, report today in Science that H2S regulates blood pressure by relaxing blood vessels. As the newest member of a family of so-called gasotransmitters, this messenger molecule is akin in function, if not form, to chemical signals like nitric oxide, dopamine and acetylcholine that relay signals between nerve cells and excite or put the brakes on mind-brain activities.

"Now that we know hydrogen sulfide's role in regulating blood pressure, it may be possible to design drug therapies that enhance its formation as an alternative to the current methods of treatment for hypertension," says Johns Hopkins neuroscientist Solomon H. Snyder, M.D., a co-author of the paper.

Conducting their investigations using mice missing a gene for an enzyme known as CSE, long suspected as responsible for making H2S, the researchers first measured hydrogen sulfide levels in a variety of tissues in the CSE-deficient mice and compared them to normal mice. They found that the gas was largely depleted in the cardiovascular systems of the altered mice, engineered by Rui Wang, M.D., Ph.D., of Lakehead University in Ontario, and Lingyun Wu, M.D., Ph.D., of the University of Saskatchewan, Canada. By contrast, normal mice had higher levels — clear evidence that hydrogen sulfide is normally made by mammalian tissues using CSE.

Next, the scientists applied tiny cuffs to the tails of the mice and measured their blood pressure, noting spikes of about 20 percent, comparable to serious hypertension in humans.

Finally, the team tested how blood vessels of CSE-deficient mice responded to the chemical neurotransmitter methacholine, known to relax normal blood vessels. The blood vessels of the altered mice relaxed hardly at all, indicating that hydrogen sulfide was largely responsible for relaxation.

Because gasotransmitters are highly conserved in mammals, the findings of the research are believed to have broad applications to human physiology and disease.

"In terms of relaxing blood vessels, it looks like hydrogen sulfide might be as important as nitric oxide," Snyder says, referring to the first gasotransmitter that two decades ago was discovered to regulate blood pressure.

Just because these two gas molecules perform similar functions, doesn't mean they're redundant, says Wang, the paper's principal author. "Nature has added on layer upon layer of complexity to provide a better and tighter control of body function — in this case, of blood pressure."

Studying gaseous messengers can be tricky, explains Snyder, an authority on nitric oxide (NO) whose lab in 1990 discovered that the enzyme triggering NO production is activated by a protein mechanism known as calcium-calmodulin.

"When a nerve fires, it releases a bit of neurotransmitter. Then it fires again, very quickly, and releases more of the neurotransmitter, which is always in reserve and at the ready in large storage pools called vesicles. However, gasses can't be stored; they diffuse. So every time there's a nerve impulse, an enzyme must be activated to make it," he says."

Although CSE, the enzyme that activates hydrogen sulfide, was characterized more than half a century ago, the new work is the first to reveal that it is activated in the same way as the nitric oxide-forming enzyme, thus establishing how hydrogen sulfide regulates blood pressure by relaxing blood vessels.

"It's difficult to overestimate the biological importance of hydrogen sulfide or its implications in hypertension as well as diabetes and neurodegenerative diseases," Wang says. "In fact, most human diseases probably have something to do with gasotransmitters."

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.sciencemag.org
http://neuroscience.jhu.edu/SolomonSnyder.php

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>