Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If your systolic stinks, 'rotten egg' gas may be why

27.10.2008
Researchers discover hydrogen sulfide is a major regulator of blood pressure

Anyone with a nose knows the rotten-egg odor of hydrogen sulfide, a gas generated by bacteria living in the human colon. Now an international team of scientists has discovered that cells inside the blood vessels of mice — as well as in people, no doubt — naturally make the gassy stuff, and that it controls blood pressure.

Having discovered that hydrogen sulfide, or H2S, is produced in the thin, endothelial lining of blood vessels, the researchers, including scientists from Johns Hopkins, report today in Science that H2S regulates blood pressure by relaxing blood vessels. As the newest member of a family of so-called gasotransmitters, this messenger molecule is akin in function, if not form, to chemical signals like nitric oxide, dopamine and acetylcholine that relay signals between nerve cells and excite or put the brakes on mind-brain activities.

"Now that we know hydrogen sulfide's role in regulating blood pressure, it may be possible to design drug therapies that enhance its formation as an alternative to the current methods of treatment for hypertension," says Johns Hopkins neuroscientist Solomon H. Snyder, M.D., a co-author of the paper.

Conducting their investigations using mice missing a gene for an enzyme known as CSE, long suspected as responsible for making H2S, the researchers first measured hydrogen sulfide levels in a variety of tissues in the CSE-deficient mice and compared them to normal mice. They found that the gas was largely depleted in the cardiovascular systems of the altered mice, engineered by Rui Wang, M.D., Ph.D., of Lakehead University in Ontario, and Lingyun Wu, M.D., Ph.D., of the University of Saskatchewan, Canada. By contrast, normal mice had higher levels — clear evidence that hydrogen sulfide is normally made by mammalian tissues using CSE.

Next, the scientists applied tiny cuffs to the tails of the mice and measured their blood pressure, noting spikes of about 20 percent, comparable to serious hypertension in humans.

Finally, the team tested how blood vessels of CSE-deficient mice responded to the chemical neurotransmitter methacholine, known to relax normal blood vessels. The blood vessels of the altered mice relaxed hardly at all, indicating that hydrogen sulfide was largely responsible for relaxation.

Because gasotransmitters are highly conserved in mammals, the findings of the research are believed to have broad applications to human physiology and disease.

"In terms of relaxing blood vessels, it looks like hydrogen sulfide might be as important as nitric oxide," Snyder says, referring to the first gasotransmitter that two decades ago was discovered to regulate blood pressure.

Just because these two gas molecules perform similar functions, doesn't mean they're redundant, says Wang, the paper's principal author. "Nature has added on layer upon layer of complexity to provide a better and tighter control of body function — in this case, of blood pressure."

Studying gaseous messengers can be tricky, explains Snyder, an authority on nitric oxide (NO) whose lab in 1990 discovered that the enzyme triggering NO production is activated by a protein mechanism known as calcium-calmodulin.

"When a nerve fires, it releases a bit of neurotransmitter. Then it fires again, very quickly, and releases more of the neurotransmitter, which is always in reserve and at the ready in large storage pools called vesicles. However, gasses can't be stored; they diffuse. So every time there's a nerve impulse, an enzyme must be activated to make it," he says."

Although CSE, the enzyme that activates hydrogen sulfide, was characterized more than half a century ago, the new work is the first to reveal that it is activated in the same way as the nitric oxide-forming enzyme, thus establishing how hydrogen sulfide regulates blood pressure by relaxing blood vessels.

"It's difficult to overestimate the biological importance of hydrogen sulfide or its implications in hypertension as well as diabetes and neurodegenerative diseases," Wang says. "In fact, most human diseases probably have something to do with gasotransmitters."

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.sciencemag.org
http://neuroscience.jhu.edu/SolomonSnyder.php

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>