Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds new light on post-operative bleeding in newborns

07.03.2016

A new study finds significant differences between the blood clot structure in adults and newborns, helping researchers better understand the challenges in addressing post-operative bleeding in neonatal patients. The researchers also found that the current standard of care for treating post-operative bleeding may pose an increased risk of thrombosis in newborns compared to adults, which researchers hadn't suspected. The study was performed by researchers at North Carolina State University, the University of North Carolina at Chapel Hill, Emory University, Children's Healthcare of Atlanta and the Georgia Institute of Technology.


These are laser scanning confocal microscopy images of clots constructed from adult fibrinogen (A), neonatal fibrinogen (B), or a mixture of the two (C). Scale bar= 20 μm.

Credit: Ashley Brown

"We knew that neonates - infants less than one month old - are more likely than adults to suffer from severe bleeding after heart surgery, which poses a variety of health risks," says Ashley Brown, first author of a paper on the study and an assistant professor in the joint biomedical engineering department at NC State and UNC-Chapel Hill.

"The current standard of care is to give neonatal patients blood products - such as a protein called fibrinogen - derived from adult blood," Brown says. "But neonatal blood and adult blood aren't the same; many of the components involved in clotting in newborns have differing levels of activity, or effectiveness, compared to the same components in adults. Our goal was to better understand how clotting in neonates differs from that in adults, so that we can move closer to developing more effective treatment strategies for these infants."

The researchers' hypothesis was that fibrinogen - the main blood-clotting protein - from neonates would form clots that are different from those formed by adult fibrinogen, and they were correct. However, they were surprised to find that fibrinogen from adults did not integrate well with the fibrinogen in neonates. In other words, the fibrinogen from adults and newborns wouldn't stick to each other and form a clot.

To test this hypothesis, the researchers took samples of neonate fibrinogen and adult fibrinogen and compared how they formed clots. They looked at clots formed solely of adult fibrinogen, clots formed solely of neonate fibrinogen, and clots formed of mixed adult and neonate fibrinogen.

The researchers found that neonate fibrinogen formed less dense, more fragile clots than adult fibrinogen. And they found that a mixture of adult and neonate fibrinogen formed clots that were also fragile and less dense - even if there was relatively little neonate fibrinogen in the mixture.

The researchers also evaluated how long it took these clots to dissolve. This is important because blood clots that don't break down can form thrombosis or be released into the bloodstream and cause a stroke.

The study showed that clots of neonate fibrinogen dissolve about twice as quickly as clots formed from adult fibrinogen. It also showed that clots formed from an adult and neonate fibrinogen mixture dissolved at approximately the same rate as adult-only clots - regardless of the percentage of neonate fibrinogen in the mixture.

"This suggests that using adult fibrinogen in neonatal patients may pose an increased risk of embolism or other adverse thrombotic events," says Nina Guzzetta, MD, corresponding author on the study, associate professor of anesthesiology at Emory University School of Medicine, and a pediatric cardiac anesthesiologist at Children's Healthcare of Atlanta.

"This work drives home that newborns are not just small adults, and we still have much to learn about clotting in neonates," Guzzetta says. "It also tells us that there is a great deal of room for improvement in the current standard of care for post-operative bleeding in neonates.

"We are investigating several approaches that may help address this problem, evaluating various modes of action," Brown says. "It is possible that we can use various external factors that promote clotting to stimulate the fibrinogen in neonates to form a denser clot. We are investigating possible alternatives to help neonates form a better clot after major surgery without having to use adult fibrinogen. For example, we are investigating the use of synthetic platelet-like particles developed by our team to augment hemostasis - the biological process that stops bleeding - in blood samples collected from these patients."

###

The paper, "Fibrin network changes in neonates after cardiopulmonary bypass," was published online March 3 in the journal Anesthesiology. The paper was co-authored by Riley Hannan, now at the University of Virginia; Lucas Timmins and Thomas Barker of the biomedical engineering program at Georgia Tech and Emory; and Janet Fernandez of Children's Healthcare of Atlanta. The work was supported by the Emory University and Children's Healthcare of Atlanta Children's Center for Cardiovascular Biology and by the National Institutes of Health under grant R21EB019068.

Media Contact

Matt Shipman
matt_shipman@ncsu.edu
919-515-6386

 @NCStateNews

http://www.ncsu.edu 

Matt Shipman | EurekAlert!

Further reports about: Healthcare biomedical engineering bleeding clots neonatal

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>