Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strengthening the immune system's fight against brain cancer

19.03.2015

NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors

When cancer strikes, it may be possible for patients to fight back with their own defenses, using a strategy known as immunotherapy. According to a new study published in Nature, researchers have found a way to enhance the effects of this therapeutic approach in glioblastoma, a deadly type of brain cancer, and possibly improve patient outcomes.


This is an artist's representation of the surface of a human dendritic cell.

Credit: Image courtesy of the National Cancer Institute.

The research was funded by the National Institute of Neurological Disorders and Stroke (NINDS) as well as the National Cancer Institute (NCI), which are part of the National Institutes of Health.

"The promise of dendritic cell-based therapy and other immunotherapies for brain cancer has been upheld for some time, but an important implication of this work is a demonstrated capacity to significantly improve the clinical impact of immunotherapy for patients with this very difficult disease," said Duane A. Mitchell, M.D., Ph.D., director of the Brain Tumor Immunotherapy Program at the University of Florida in Gainesville and co-lead author of the study.

Dendritic cells are specialized immune cells that normally capture microorganisms, and then migrate to the lymph nodes to prepare other immune players, such as T cells, to fight off the invaders.

Dendritic cells have been used for immunotherapy to target a variety of tumor types, including those that affect the brain. These cells are taken from the patient, engineered to express antigens from the tumor¬ to create a vaccine, and then injected back into the patient. Once in the patient, the engineered dendritic cells activate T cells, which can fight the tumor and also prevent it from coming back, via an immune memory response.

Dr. Mitchell and his colleagues wanted to know if increasing dendritic cell migration to lymph nodes would improve the effects of the vaccine. To test this idea, a group of glioblastoma patients was randomized to receive a tetanus booster shot before getting the tumor-antigen expressing dendritic cell vaccine.

The booster was designed to set off an inflammatory response at the site of the vaccination, prepping the immune system for a larger battle. The other group of patients were injected with their own native dendritic cells instead of a tetanus shot, and then treated with the tumor-antigen expressing dendritic cell vaccine. Both sets of patients were treated with the vaccine which was being tested for effectiveness against glioblastoma.

The vaccine used in this study was targeted against cytomegalovirus (CMV). Studies have shown that CMV is found in glioblastoma tumors, but it is unclear if the virus causes tumors or contributes to disease progression. Glioblastomas are a devastating form of brain cancer with five year survival rates under 10 percent. From the time of diagnosis, average survival time is less than two years.

"The role of CMV in glioblastoma has been a controversial area of research for several years. These new findings, and especially the dramatic survival rates, suggest that the virus may be an effective target for immune therapy. The results presented by Dr. Mitchell and his colleagues should stimulate more basic research on CMV and its potential therapeutic role in brain tumors and possibly other cancers," said Jane Fountain, Ph.D., program director at the NINDS.

The results showed that administering a tetanus booster before the vaccine increased dendritic cell migration to lymph nodes and also had a significant effect on clinical outcomes. The patients who received the tetanus booster lived more than 36.6 months after diagnosis compared to an average survival time of 18.5 months in those who received dendritic cells alone.

"We did not expect that enhancing dendritic cell migration would be associated with such a dramatic improvement on clinical outcomes in our patients," said Dr. Mitchell.

Next, the investigators used a mouse model to determine how the tetanus booster increased dendritic cell migration to the lymph nodes. The results suggested that giving a booster shot to mice that have received the tetanus vaccine activated a recall response in the exposed T cells. Acting through a chemical messenger known as CCL3, those T cells increased dendritic cell migration to the lymph nodes, which ultimately enhanced the effect of the dendritic cell vaccine on tumor growth suppression.

"Dendritic cell vaccines targeting glioblastoma can be very effective by enhancing migration of dendritic cells. We now understand how we may improve outcomes for patients receiving this type of therapy," said Dr. Mitchell. He added that larger clinical studies need to be conducted to confirm these results.

In addition, more research is necessary to define the role of CMV in glioblastoma and further determine mechanisms to enhance efficacy of vaccines in cancer therapy.

###

This work was supported by grants from the NINDS (NS20023, NS067037) and the National Cancer Institute (CA108786, CA177476, CA134844).

References:

Mitchell et al. "Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients," Nature, March 11, 2015.

The NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Barbara McMakin | EurekAlert!

More articles from Health and Medicine:

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>