Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strengthening the immune system's fight against brain cancer

19.03.2015

NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors

When cancer strikes, it may be possible for patients to fight back with their own defenses, using a strategy known as immunotherapy. According to a new study published in Nature, researchers have found a way to enhance the effects of this therapeutic approach in glioblastoma, a deadly type of brain cancer, and possibly improve patient outcomes.


This is an artist's representation of the surface of a human dendritic cell.

Credit: Image courtesy of the National Cancer Institute.

The research was funded by the National Institute of Neurological Disorders and Stroke (NINDS) as well as the National Cancer Institute (NCI), which are part of the National Institutes of Health.

"The promise of dendritic cell-based therapy and other immunotherapies for brain cancer has been upheld for some time, but an important implication of this work is a demonstrated capacity to significantly improve the clinical impact of immunotherapy for patients with this very difficult disease," said Duane A. Mitchell, M.D., Ph.D., director of the Brain Tumor Immunotherapy Program at the University of Florida in Gainesville and co-lead author of the study.

Dendritic cells are specialized immune cells that normally capture microorganisms, and then migrate to the lymph nodes to prepare other immune players, such as T cells, to fight off the invaders.

Dendritic cells have been used for immunotherapy to target a variety of tumor types, including those that affect the brain. These cells are taken from the patient, engineered to express antigens from the tumor¬ to create a vaccine, and then injected back into the patient. Once in the patient, the engineered dendritic cells activate T cells, which can fight the tumor and also prevent it from coming back, via an immune memory response.

Dr. Mitchell and his colleagues wanted to know if increasing dendritic cell migration to lymph nodes would improve the effects of the vaccine. To test this idea, a group of glioblastoma patients was randomized to receive a tetanus booster shot before getting the tumor-antigen expressing dendritic cell vaccine.

The booster was designed to set off an inflammatory response at the site of the vaccination, prepping the immune system for a larger battle. The other group of patients were injected with their own native dendritic cells instead of a tetanus shot, and then treated with the tumor-antigen expressing dendritic cell vaccine. Both sets of patients were treated with the vaccine which was being tested for effectiveness against glioblastoma.

The vaccine used in this study was targeted against cytomegalovirus (CMV). Studies have shown that CMV is found in glioblastoma tumors, but it is unclear if the virus causes tumors or contributes to disease progression. Glioblastomas are a devastating form of brain cancer with five year survival rates under 10 percent. From the time of diagnosis, average survival time is less than two years.

"The role of CMV in glioblastoma has been a controversial area of research for several years. These new findings, and especially the dramatic survival rates, suggest that the virus may be an effective target for immune therapy. The results presented by Dr. Mitchell and his colleagues should stimulate more basic research on CMV and its potential therapeutic role in brain tumors and possibly other cancers," said Jane Fountain, Ph.D., program director at the NINDS.

The results showed that administering a tetanus booster before the vaccine increased dendritic cell migration to lymph nodes and also had a significant effect on clinical outcomes. The patients who received the tetanus booster lived more than 36.6 months after diagnosis compared to an average survival time of 18.5 months in those who received dendritic cells alone.

"We did not expect that enhancing dendritic cell migration would be associated with such a dramatic improvement on clinical outcomes in our patients," said Dr. Mitchell.

Next, the investigators used a mouse model to determine how the tetanus booster increased dendritic cell migration to the lymph nodes. The results suggested that giving a booster shot to mice that have received the tetanus vaccine activated a recall response in the exposed T cells. Acting through a chemical messenger known as CCL3, those T cells increased dendritic cell migration to the lymph nodes, which ultimately enhanced the effect of the dendritic cell vaccine on tumor growth suppression.

"Dendritic cell vaccines targeting glioblastoma can be very effective by enhancing migration of dendritic cells. We now understand how we may improve outcomes for patients receiving this type of therapy," said Dr. Mitchell. He added that larger clinical studies need to be conducted to confirm these results.

In addition, more research is necessary to define the role of CMV in glioblastoma and further determine mechanisms to enhance efficacy of vaccines in cancer therapy.

###

This work was supported by grants from the NINDS (NS20023, NS067037) and the National Cancer Institute (CA108786, CA177476, CA134844).

References:

Mitchell et al. "Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients," Nature, March 11, 2015.

The NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Barbara McMakin | EurekAlert!

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>