Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SLU Researcher Finds an Off Switch for Pain

27.11.2014

Activating the Adenosine A3 Receptor Subtype Is Key to Powerful Pain Relief

In research published in the medical journal Brain, Saint Louis University researcher Daniela Salvemini, Ph.D. and colleagues within SLU, the National Institutes of Health (NIH) and other academic institutions have discovered a way to block a pain pathway in animal models of chronic neuropathic pain including pain caused by chemotherapeutic agents and bone cancer pain suggesting a promising new approach to pain relief.


Daniela Salvemini, Ph.D.

The scientific efforts led by Salvemini, who is professor of pharmacological and physiological sciences at SLU, demonstrated that turning on a receptor in the brain and spinal cord counteracts chronic nerve pain in male and female rodents. Activating the A3 receptor – either by its native chemical stimulator, the small molecule adenosine, or by powerful synthetic small molecule drugs invented at the NIH – prevents or reverses pain that develops slowly from nerve damage without causing analgesic tolerance or intrinsic reward (unlike opioids).

An Unmet Medical Need
Pain is an enormous problem. As an unmet medical need, pain causes suffering and comes with a multi-billion dollar societal cost. Current treatments are problematic because they cause intolerable side effects, diminish quality of life and do not sufficiently quell pain.

The most successful pharmacological approaches for the treatment of chronic pain rely on certain “pathways”: circuits involving opioid, adrenergic, and calcium channels.

For the past decade, scientists have tried to take advantage of these known pathways – the series of interactions between molecular-level components that lead to pain. While adenosine had shown potential for pain-killing in humans, researchers had not yet successfully leveraged this particular pain pathway because the targeted receptors engaged many side effects.

A Key to Pain Relief
In this research, Salvemini and colleagues have demonstrated that activation of the A3 adenosine receptor subtype is key in mediating the pain relieving effects of adenosine.

“It has long been appreciated that harnessing the potent pain-killing effects of adenosine could provide a breakthrough step towards an effective treatment for chronic pain,” Salvemini said. “Our findings suggest that this goal may be achieved by focusing future work on the A3AR pathway, in particular, as its activation provides robust pain reduction across several types of pain.”

Researchers are excited to note that A3AR agonists are already in advanced clinical trials as anti-inflammatory and anticancer agents and show good safety profiles.

“These studies suggest that A3AR activation by highly selective small molecular weight A3AR agonists such as MRS5698 activates a pain-reducing pathway supporting the idea that we could develop A3AR agonists as possible new therapeutics to treat chronic pain,” Salvemini said.

The research was funded in part by the National Cancer Institute (NCI), (RO1CA169519) and the National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK) at the NIH in Bethesda, Maryland.

Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first medical degree west of the Mississippi River. The school educates physicians and biomedical scientists, conducts medical research, and provides health care on a local, national and international level. Research at the school seeks new cures and treatments in five key areas: cancer, liver disease, heart/lung disease, aging and brain disease, and infectious diseases.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov

Carrie Bebermeyer | EurekAlert!
Further information:
http://www.slu.edu/x98903.xml

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>