Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shrinking 3-D technology for comfortable smart phone viewing

24.02.2016

Using a technique called super multi-view, Chinese researchers have developed a thin display that creates a three-dimensional image without causing viewing discomfort

Imagine watching a 3D movie on your smart phone and suddenly getting a headache or even feeling nauseous. Such viewer discomfort is one of the biggest obstacles preventing widespread application of 3D display technology - especially for portable devices whose slim design poses an extra challenge.


A super multi-view (SMV) system with comfortable 3-D effects, constructed by a group of OLED microdisplay/projecting lens pairs, is proposed in this paper. Through gating different segments of each projecting lens sequentially and refreshing the virtual image of the corresponding microdisplay synchronously, the proposed SMV system greatly decreases the demand on the number of employed microdisplays and at the same time takes a thin optical structure, endowing great potential for portable devices.

Credit: Dongdong Teng

Now researchers at the Sun Yan-Sen University, China have developed a new display with comfortable 3D visual effects. The device is based on a "super multi-view technique" which works to reduce viewer discomfort. It also greatly decreases the required number of microdisplays, which makes a compact design possible. The researchers describe their device in a paper in the journal Optics Express, from The Optical Society (OSA).

"There are many causes for 3D-viewing discomfort, but the most substantial one is the vergence-accomodation conflict," said Lilin Liu, author and an associate professor of the State Key Lab of Optoelectronics Materials and Technology, Sun Yat-Sen University, China. She explained that vergence-accomodation conflict is a mismatch between the point at which the eyes converge on an image and the distance to which they focus when viewing 3D images.

Human eyes are separated by about six centimeters, which means that when we look at an object, the two eyes see slightly different images. Our brain directs both eyes to the same object and the distance at which the eyes' sight lines cross is technically called "vergence distance." Meanwhile, our brain adjusts the focus of the lens within each eye to make the image sharp and clear on the retina. The distance to which the eye is focused is called "the accommodative distance." Failure to converge leads to double images, while mis-accommodation results in blurry images.

In natural viewing, human's vergence and accommodation responses are correlated with each other and adjust simultaneously. In other words, vergence and accommodation distance are almost always the same -- that's why we can always see an object clearly and comfortably.

Conventional 3D displays try to mimic the natural viewing by creating images with varying binocular difference, which simulates vergence changes in the natural 3D landscape. But the accommodative distance remains unchanged at the display distance, resulting in the so-called vergence-accomodation conflict that causes viewer discomfort.

"Conventional 3D displays usually deliver some views of the displayed spatial spot to a single eye pupil. That is why accommodative distance remains fixed on the display screen and cannot adjust simultaneously as vergence distance does, causing vergence-accomodation conflict," said Liu.

The team's solution is to project numerous 2D perspective views to viewpoints with intervals smaller than the pupil diameter of the eye. This means the device can deliver at least two different views to a single eye pupil.

"Our proposed scheme overcomes vergence-accomodation conflict by delivering more than two views to a single eye pupil, making the eyes focus on the displayed image naturally. Also, the prototype in our study is 65-millimeter-thin, and the system could become thinner with improvement in structural elements, which provides a demo for comfortable 3D wearable electronics or portable displays," said Dongdong Teng, co- author of the paper.

The team's prototype system consists of 11 elementary projecting units. Each projecting unit is constructed by an organic light-emitting diode (OLED) microdisplay, a rectangular projecting lens, two vertical baffles and a group of gating apertures (liquid crystal panel) attached to the projecting lens. By gating different gating apertures in sequence and refreshing the virtual image of the corresponding microdisplay synchronously, the researchers can obtain dense viewpoints on the display screen.

"Creating a dense arrangement of viewpoints on the display screen is the key to comfortable 3D effect," Liu noted.

To test viewers' reactions to the prototype system, eight subjects were asked to observe a displayed 3D image of an apple in the lab environment and no headache or discomfort was reported.

Moreover, as the gating aperture array is adhered to the projecting unit array, the size of the prototypestructure is thin, around 65 millimeters, which is promising for applications in portable devices.

Liu said adjustments to the device could make it even thinner, which is a focus of their future work.

"The novelty and the main merit of our super multi-view system lie in the thin structure. To the best of our knowledge, this is the first report of a 'super multi-view system' with thin structure, which makes it suitable for portable electronics such as smart phones and wearable devices," Liu said.

###

Paper: Lilin Liu, Zhiyong Pang, and Dongdong Teng, "Super multi-view three-dimensional display technique for portable devices," Opt. Express 24, 4421-4430 (2016)

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by The Optical Society and edited by Andrew M. Weiner of Purdue University. Optics Express is an open-access journal and is available at no cost to readers online at: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contact

Rebecca Andersen
RAndersen@osa.org
202-416-1443

 @opticalsociety

http://www.osa.org 

Rebecca Andersen | EurekAlert!

Further reports about: 3D displays lens microdisplay prototype system smart phone super multi-view

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>