Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists take steps to make weak TB drugs strong again

19.01.2016

3-D structures could lead to more potent fluoroquinolones for the fight against other disease-causing bacteria too

Biophysicists have discovered why the bacteria that cause tuberculosis (TB) are naturally somewhat resistant to antibiotics known as fluoroquinolones. Their findings, based on mapping the detailed three-dimensional structure of the drugs interacting with an essential enzyme in the TB germ, also reveal why some TB drugs are more potent than others and suggest how drug developers can make fluoroquinolones more efficacious against mutations that make the lung disease drug resistant.


The drug moxifloxacin (green) interacts with internal regions of the gyrase enzyme (blues and pink) and broken DNA (orange and yellow), both from the bacterium that causes tuberculosis.

Credit: Tim Blower

Details of the research are reported in two papers to be published the week of Jan. 18 in the Proceedings of the National Academy of Sciences.

"Front-line treatments for TB are eroding rapidly as more cases of multidrug-resistant TB arise worldwide," says James Berger, Ph.D., professor of biophysics and biophysical chemistry at the Johns Hopkins University School of Medicine. "Our work helps show that we need not -- and indeed should not -- give up on fluoroquinolones, a longtime weapon in the fight against disease-causing bacteria in general. We've helped to identify several promising possibilities for developing new versions of these drugs that might even work against extensively drug-resistant TB."

Quinolones are a commonly used class of synthetic, broad-spectrum antibiotics that were first developed in the early 1960s. By the 1970s, more potent fluoroquinolone derivatives were made with the simple addition of a fluorine atom to the base molecule. All quinolones, Berger notes, kill bacteria in the same way, by gumming up the works of the enzyme gyrase, which alters the coiling of DNA by breaking its strands and then resealing them. Quinolones prevent resealing so that the bacterial DNA fall apart.

To better understand why some fluoroquinolones work better clinically than others, Berger and his research team used a high-powered imaging technique called X-ray crystallography to generate three-dimensional, atom-by-atom models of how TB's gyrase interacts with five different versions of the drugs, including a newly synthesized one, 8-methyl-moxifloxacin. Collaborators at Vanderbilt University also used a biochemical test to monitor how various derivatives of the drugs caused bacterial DNA to fall apart.

By viewing the "pocket" within gyrase where the drugs sit, the research team says it saw that the drugs have the potential to interact with the bacterial proteins at two different sites. At one of these sites, the researchers confirmed that a naturally swapped protein building block in TB's version of gyrase makes fluoroquinolones less effective against TB than against other bacterial infections. Surprisingly, none of the drugs latched on to the second site at all.

According to Berger, this means there is untapped potential to make fluoroquinolone derivatives that bind both sites and in that way increase the drugs' interactions with gyrase. And, because bacteria, including those that cause TB, might develop a mutation in one region but probably not both, Berger says they would be less likely to become resistant to a drug that strongly bound to both sites.

Most unexpectedly, though, the researchers say, they discovered that the more potent versions of the drugs did not interact strongly with either of the gyrase regions. Instead, their increased effectiveness was due to strong interactions with the broken DNA within the gyrase. When the researchers applied these drugs to the gyrase enzyme in solution and then rinsed it out, the more potent drugs remained stuck within the DNA-gyrase complex, while the weaker ones washed away.

"This result means the fluoroquinolones aren't working in the most straightforward way, and that's a challenge for drug developers," says Berger. "We have to rethink the chemistry of these drugs, but doing so will likely open up new avenues for improvements."

One such improvement, based on increased interactions with DNA, may already exist in the newly synthesized 8-methyl-moxifloxacin, created by University of Iowa chemist Robert Kerns. When Berger's team assessed the efficacy of the five fluoroquinolones against two common mutant forms of the TB gyrase, 8-methyl-moxifloxacin did better than the rest in test tube studies, suggesting that it may also perform better than related drugs against other drug-resistant bacteria.

"All together, these studies provide a wealth of information that drug companies can use to continue the development of fluoroquinolones," says Berger. "They hold a lot of promise for fighting drug resistance in bacteria that cause TB and many other diseases."

Though TB affects less than 10,000 people in the U.S., it is a leading cause of death worldwide, according to the World Health Organization, affecting 9.6 million people in 2014 and killing 1.5 million of them. Almost 500,000 of these cases are estimated to be multidrug resistant, and fluoroquinolones are under increasing investigation as a means to help counteract these resistant strains.

###

Other authors of the report include Tim Blower of the Johns Hopkins University School of Medicine (now an independent researcher at Durham University); Benjamin Williamson of the University of Iowa; and Katie Aldred and Neil Osheroff of Vanderbilt University School of Medicine.

This work was supported by funding through the European Molecular Biology Organization Long-Term Fellowship, the U.S. Department of Veterans Affairs' Merit Review Award (I01 Bx002198), the National Institute of Allergy and Infectious Diseases (R01 AI87671, the National Cancer Institute (R01 CA077373, T32 CA09582, ACB-12002), the National Institute of General Medical Sciences (R01 GM033944, AGM-12006, P41 GM103403), the National Center for Research Resources (S10 RR029205) and the U.S. Department of Energy (DE-AC02-06CH11357).

Media Contact

Catherine Gara
ckolf@jhmi.edu
443-287-2251

 @HopkinsMedicine

http://www.hopkinsmedicine.org 

Catherine Gara | EurekAlert!

Further reports about: DNA Johns Hopkins TB bacterial DNA drugs enzyme fluoroquinolones gyrase

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>