Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists take steps to make weak TB drugs strong again

19.01.2016

3-D structures could lead to more potent fluoroquinolones for the fight against other disease-causing bacteria too

Biophysicists have discovered why the bacteria that cause tuberculosis (TB) are naturally somewhat resistant to antibiotics known as fluoroquinolones. Their findings, based on mapping the detailed three-dimensional structure of the drugs interacting with an essential enzyme in the TB germ, also reveal why some TB drugs are more potent than others and suggest how drug developers can make fluoroquinolones more efficacious against mutations that make the lung disease drug resistant.


The drug moxifloxacin (green) interacts with internal regions of the gyrase enzyme (blues and pink) and broken DNA (orange and yellow), both from the bacterium that causes tuberculosis.

Credit: Tim Blower

Details of the research are reported in two papers to be published the week of Jan. 18 in the Proceedings of the National Academy of Sciences.

"Front-line treatments for TB are eroding rapidly as more cases of multidrug-resistant TB arise worldwide," says James Berger, Ph.D., professor of biophysics and biophysical chemistry at the Johns Hopkins University School of Medicine. "Our work helps show that we need not -- and indeed should not -- give up on fluoroquinolones, a longtime weapon in the fight against disease-causing bacteria in general. We've helped to identify several promising possibilities for developing new versions of these drugs that might even work against extensively drug-resistant TB."

Quinolones are a commonly used class of synthetic, broad-spectrum antibiotics that were first developed in the early 1960s. By the 1970s, more potent fluoroquinolone derivatives were made with the simple addition of a fluorine atom to the base molecule. All quinolones, Berger notes, kill bacteria in the same way, by gumming up the works of the enzyme gyrase, which alters the coiling of DNA by breaking its strands and then resealing them. Quinolones prevent resealing so that the bacterial DNA fall apart.

To better understand why some fluoroquinolones work better clinically than others, Berger and his research team used a high-powered imaging technique called X-ray crystallography to generate three-dimensional, atom-by-atom models of how TB's gyrase interacts with five different versions of the drugs, including a newly synthesized one, 8-methyl-moxifloxacin. Collaborators at Vanderbilt University also used a biochemical test to monitor how various derivatives of the drugs caused bacterial DNA to fall apart.

By viewing the "pocket" within gyrase where the drugs sit, the research team says it saw that the drugs have the potential to interact with the bacterial proteins at two different sites. At one of these sites, the researchers confirmed that a naturally swapped protein building block in TB's version of gyrase makes fluoroquinolones less effective against TB than against other bacterial infections. Surprisingly, none of the drugs latched on to the second site at all.

According to Berger, this means there is untapped potential to make fluoroquinolone derivatives that bind both sites and in that way increase the drugs' interactions with gyrase. And, because bacteria, including those that cause TB, might develop a mutation in one region but probably not both, Berger says they would be less likely to become resistant to a drug that strongly bound to both sites.

Most unexpectedly, though, the researchers say, they discovered that the more potent versions of the drugs did not interact strongly with either of the gyrase regions. Instead, their increased effectiveness was due to strong interactions with the broken DNA within the gyrase. When the researchers applied these drugs to the gyrase enzyme in solution and then rinsed it out, the more potent drugs remained stuck within the DNA-gyrase complex, while the weaker ones washed away.

"This result means the fluoroquinolones aren't working in the most straightforward way, and that's a challenge for drug developers," says Berger. "We have to rethink the chemistry of these drugs, but doing so will likely open up new avenues for improvements."

One such improvement, based on increased interactions with DNA, may already exist in the newly synthesized 8-methyl-moxifloxacin, created by University of Iowa chemist Robert Kerns. When Berger's team assessed the efficacy of the five fluoroquinolones against two common mutant forms of the TB gyrase, 8-methyl-moxifloxacin did better than the rest in test tube studies, suggesting that it may also perform better than related drugs against other drug-resistant bacteria.

"All together, these studies provide a wealth of information that drug companies can use to continue the development of fluoroquinolones," says Berger. "They hold a lot of promise for fighting drug resistance in bacteria that cause TB and many other diseases."

Though TB affects less than 10,000 people in the U.S., it is a leading cause of death worldwide, according to the World Health Organization, affecting 9.6 million people in 2014 and killing 1.5 million of them. Almost 500,000 of these cases are estimated to be multidrug resistant, and fluoroquinolones are under increasing investigation as a means to help counteract these resistant strains.

###

Other authors of the report include Tim Blower of the Johns Hopkins University School of Medicine (now an independent researcher at Durham University); Benjamin Williamson of the University of Iowa; and Katie Aldred and Neil Osheroff of Vanderbilt University School of Medicine.

This work was supported by funding through the European Molecular Biology Organization Long-Term Fellowship, the U.S. Department of Veterans Affairs' Merit Review Award (I01 Bx002198), the National Institute of Allergy and Infectious Diseases (R01 AI87671, the National Cancer Institute (R01 CA077373, T32 CA09582, ACB-12002), the National Institute of General Medical Sciences (R01 GM033944, AGM-12006, P41 GM103403), the National Center for Research Resources (S10 RR029205) and the U.S. Department of Energy (DE-AC02-06CH11357).

Media Contact

Catherine Gara
ckolf@jhmi.edu
443-287-2251

 @HopkinsMedicine

http://www.hopkinsmedicine.org 

Catherine Gara | EurekAlert!

Further reports about: DNA Johns Hopkins TB bacterial DNA drugs enzyme fluoroquinolones gyrase

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>