Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover that genes lend natural resistance resistance to typhoid fever

12.11.2014

An international team of researchers has discovered that genes are linked to humans’ ability to resist typhoid fever. This finding is significant in helping to develop personalised therapies for sufferers of typhoid fever, based on an individual’s genetic code.

The research team, jointly led by A*STAR’s Genome Institute of Singapore (GIS) and the Oxford University Clinical Research Unit (OUCRU) in Vietnam had their findings published in the advanced online issue of Nature Genetics.

Typhoid fever is a disease caused by the bacterium Salmonella typhi and is usually contracted through the consumption of contaminated food or water. Most infected individuals recover without any lasting detriment to their health. However, a number of infected individuals are unable to clear the infection, and develop typhoid fever.

An estimated 21 million cases of typhoid fever and 200,000 deaths occur annually worldwide[1]. Without therapy, the illness can last up to four weeks, ending in death in up to 25 percent of cases. Increasing resistance to available antimicrobial agents may result in dramatic increases in case-fatality rates. Epidemics and high endemic disease rates have occurred in the Central Asian Republics, the Indian subcontinent, and across Asia and the Pacific Islands.

The scientists compared the genomic profiles of typhoid patients with healthy individuals from Vietnam and Nepal. They found that a genetic variant mapping near the human leukocyte antigen (HLA) locus showed very strong association with resistance to typhoid fever. This locus is responsible for the general activation of the immune response upon contact with invading bacteria.

Co-lead author and principal investigator at the Human Genetics unit in GIS, Dr Khor Chiea Chuen, co-lead author and principal investigator at the Human Genetics unit in GIS, said, “We were very surprised to observe such strong association between an HLA marker and individual susceptibility to typhoid. Current typhoid vaccines are not completely effective. The resistance allele acts like a ‘natural vaccine’, and this discovery by our team could help direct and focus future studies to make a truly efficacious typhoid vaccine.”

It was found that individuals carrying one copy of the DNA sequence associated with resistance showed up to four-fold protection against typhoid fever, while those carrying two copies of the same DNA sequence almost never contracted typhoid. This observation suggests that the outcome of the body’s effort to successfully clear an infection by Salmonella typhi depends on how bacterial components interact with the body’s HLA to produce a robust immune response.

Dr Sarah Dunstan, co-lead author and Senior Research Fellow at the Nossal Institute of Global Health, University of Melbourne, added, “Typhoid fever remains a considerable health burden in many lower income countries in Asia. Our study is the first large-scale, search for human genes that affect a person’s risk of typhoid. We found that carrying a particular form of the HLA-DRB1 gene provides natural resistance against typhoid. The HLA molecules are in general very important because they are able to recognise invading bacteria and turn on the body’s immune system. If we can understand this natural mechanism of disease resistance, then we can use this knowledge to help inform improved vaccine and therapeutic design.” Dr Dunstan was Senior Scientist at the OUCRU in Vietnam at the time of the study.

Dr Guy Thwaites, Director of OUCRU in Vietnam, said, “This important study shows the value of multi-centre, collaborative clinical infectious diseases research in Asia. Many of the participants were recruited to clinical trials investigating the best treatment regimens for typhoid fever in Vietnam and Nepal. These patients also provided their consent for later genetic testing, therefore the trials were not only able to provide answers to key clinical questions, but also – as this paper demonstrates beautifully – answers to fundamental questions about shared disease susceptibility mechanisms in different populations.”

Reference:
1. Data from Centers for Disease Control and Prevention: http://www.cdc.gov/nczved/divisions/dfbmd/diseases/typhoid_fever/technical.html 

Lee Swee Heng | ResearchSEA
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

Further reports about: GIS Genetics HLA Human Genetics genes immune individuals resistance typhoid typhoid fever

More articles from Health and Medicine:

nachricht A better way to measure the stiffness of cancer cells
01.03.2017 | Duke University

nachricht Humans have three times more brown body fat
01.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>