Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new properties of microbes that cause common eye infection

12.11.2014

Scientists from Massachusetts Eye and Ear/Harvard Medical School Department of Ophthalmology have used the power of new genomic technology to discover that microbes that commonly infect the eye have special, previously unknown properties. These properties are predicted to allow the bacterium -- Streptococcus pneumoniae -- to specifically stick to the surface of the eye, grow, and cause damage and inflammation.

Researchers are now using this information to develop new ways to treat and prevent this bacterium, which is becoming increasingly resistant to antibiotics. Their findings are in the current issue of Nature Communications.

S. pneumoniae is a leading cause of infection and is responsible for diseases ranging from infection of the lungs, pneumonia, to infection of the brain, to infection of the surface of the eye known as conjunctivitis. Although infection of the eye can usually be safely treated, S. pneumoniae infection is a leading cause of illness and death worldwide.

According to Mass. Eye and Ear researcher Michael S. Gilmore, Sir William Osler Professor of Ophthalmology, Harvard Medical School, an effective vaccine is available that helps prevent many of the most severe types of infection. "I believe it is especially important for children and the elderly to be vaccinated. The vaccine causes the body to react to a slimy coating on the bacterial surface called a "capsule." The capsule allows S. pneumoniae to escape from white blood cells that try to eliminate it, and S. pneumoniae goes on to cause lung and other infections."

However, the strains of S. pneumoniae that cause eye infection have been known to lack this capsule, yet they still cause infection. "Because they lack the capsule, they are not affected by the vaccine either," he continued.

To design a better vaccine, and to understand how these "unencapsulated" strains of S. pneumoniae are still able to cause infection of the ocular surface, the research team, spearheaded by postdoctoral researcher Michael Valentino and including Mass. Eye and Ear scientists Wolfgang Haas and Paulo Bispo, as well as a collaborative team from the Broad Institute of Harvard University and Massachusetts Institute of Technology, the U.S. Centers for Disease Control and Prevention, and elsewhere, examined the genomes of a large collection of S. pneumoniae strains collected from across the United States.

"We found that about 90 percent of the conjunctivitis strains were very closely related and formed a new group of S. pneumoniae with infectious properties that were different from any other known strains," Dr. Gilmore said. "These new properties are believed to allow S. pneumoniae to resist the normal clearance mechanisms of the surface of the eye, including blinking and tears, stick to the eye surface, grow there and cause damage."

Dr. Gilmore believes that including some of the S. pneumoniae proteins that allow the bacterium to do this in a new type of vaccine, might lead to the prevention of nearly 90 percent of the cases of conjunctivitis caused by this microbe and save the use of antibiotics for more severe infections.

The paper, entitled "Unencapsulated Streptococcus pneumoniae from conjunctivitis encode variant traits and belong to a distinct phylogenetic cluster," appears in the Nov. 13 issue of issue of the prestigious international science journal, Nature Communications.

Portions of this project were supported by NIH grants EY024285, Molecular Basis for Ocular Surface Tropism in Conjunctivitis and by the Harvard-wide Program on Antibiotic Resistance, AI083214. HHSN272200900018C supported the involvement of A.M.M. Additional support for this project was obtained from the ALSAC organization of St Jude Children's Research Hospital (J.W.R., C.B., R.A.C. and E.I.T.). In addition, portions of this project were supported by Bausch and Lomb Inc. (C.M.S., W.H., T.W.M. and M.S.G.). M.D.V. was supported in part by NIH fellowship through EY007145.

About Massachusetts Eye and Ear

Massachusetts Eye and Ear clinicians and scientists are driven by a mission to find cures for blindness, deafness and diseases of the head and neck. Led by the Howe Laboratory in Ophthalmology, Schepens Eye Research Institute, and the Eaton-Peabody Laboratory in Otology, Mass. Eye and Ear in Boston is the world's largest vision and hearing research center, offering hope and healing to patients everywhere through discovery and innovation.

Mass. Eye and Ear is a Harvard Medical School teaching hospital that trains future medical leaders in ophthalmology and otolaryngology, through residency as well as clinical and research fellowships. Internationally acclaimed since its founding in 1824, Mass. Eye and Ear employs full-time, board-certified physicians who offer high-quality and affordable specialty care that ranges from the routine to the very complex. U.S. News & World Report's "Best Hospitals Survey" has consistently ranked the Mass. Eye and Ear Departments of Ophthalmology and Otolaryngology as among the best in the nation.

Mary Leach | EurekAlert!
Further information:
http://www.meei.harvard.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>