Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create imaging 'toolkit' to help identify new brain tumor drug targets

02.02.2016

Stopping the growth of blood vessels in tumours is a key target for glioblastoma therapies, and imaging methods are essential for initial diagnosis and monitoring the effects of treatments. While mapping vessels in tumours has proven a challenge, researchers have now developed a combined magnetic resonance imaging (MRI) and ultramicroscopy 'toolkit' to study vessel growth in glioma models in more detail than previously possible. Their study is to be published in the journal eLife.

"Gliomas are highly malignant brain tumours with poor prognosis," says Michael Breckwoldt, a physician-scientist and one of the lead authors of the paper from the University of Heidelberg.


Brain tumor microvessels are visualized using dual-color ultramicroscopy.

Credit: Breckwoldt, Bode et al.

"Many efforts have been made to develop therapies against the growth of blood vessels and therefore 'starve' tumours of their resources, but they are not entirely effective. Improved imaging techniques that faithfully show the vessel architecture, including their growth, structure and density, and the effects of treatments in a non-invasive way are therefore needed to inform the development of future clinical trials."

In their study in mice, the team combined an MRI approach in vivo with ultramicroscopy of ex vivo whole brains cleared for imaging.

The technique is based on T2*-weighted (T2*-w) MRI images, one of the basic pulse sequences in MRI, with high resolution to allow for substantially more detail than conventional T2*-w imaging. Pre- and post-contrast MR scans were performed to define the growth of vessels during glioma development in two different glioma models.

The team further mapped the development of vessels by dual-colour ultramicroscopy of whole, cleared brains. Using fluorescent labelling of microvessels, they collected complementary 3D MR and ultramicroscopy data sets (dubbed the 'MR-UM'), which could be compared side-by-side.

"MR-UM can be used as a platform for three-dimensional mapping of single vessels and detailed measurements of the growth of newly formed vessels over time," Dr. Breckwoldt explains.

"This provides a better understanding of the underlying mechanisms of existing treatment and could help identify novel targets for future drug development," adds Dr. Julia Bode, co-lead author from the German Cancer Research Centre.

The team also used the toolkit to assess the effects of existing anti-vascular endothelial growth factor (anti-VEGF) treatments or radiation therapy on the vessel compartment within the glioma models. They found that such treatments are insufficient to halt tumour growth in mice, which mirrors current human studies.

"Dual inhibitors of vessel growth are now being developed and our toolkit could also help assess their therapeutic effects in detail," says Bode.

The T2*-weighted imaging sequence and UM studies in ex vivo brains are at present only suitable for mapping tumour vessels in a preclinical setting. The team anticipates, however, that future studies using high-field clinical MR systems should enable possible translation of the MRI approach to the clinical arena. Furthermore, specimens taken for clinical diagnosis could be studied using ultramicroscopy, making the full MR-UM toolkit a potential player in a clinical setting.

About eLife

eLife is a unique collaboration between the funders and practitioners of research to improve the way important research is selected, presented, and shared. eLife publishes outstanding works across the life sciences and biomedicine -- from basic biological research to applied, translational, and clinical studies. All papers are selected by active scientists in the research community. Decisions and responses are agreed by the reviewers and consolidated by the Reviewing Editor into a single, clear set of instructions for authors, removing the need for laborious cycles of revision and allowing authors to publish their findings quickly. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, and the Wellcome Trust. Learn more at elifesciences.org.

Media Contact

Emily Packer
e.packer@elifesciences.org
01-223-855-373

 @elife

http://www.elifesciences.org 

Emily Packer | EurekAlert!

Further reports about: MRI MRI images blood vessels brain tumor clinical diagnosis glioma tumour

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>