Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at Mainz University identify a new population of regulatory T-cells

09.02.2015

Discovery improves understanding of the cause of allergic asthma and may serve as an early diagnostic marker / Publication in Nature Immunology

When the mucosal surfaces in the lungs of healthy people come into contact with allergenic substances, so-called regulatory T cells also known as Treg cells, are activated. These are capable of actively preventing the development of allergies.

However, if these regulatory mechanisms malfunction the cells of the immune system attack innocuous substances which enter the body from the environment, ultimately leading to the development of atopic diseases such as allergic asthma. In western countries, asthma is the most common chronic disease in children under the age of 15 years.

Professor Tobias Bopp, Professor Edgar Schmitt, and Dr. Alexander Ulges of the Institute of Immunology at the University Medical Center of Johannes Gutenberg University Mainz (JGU) have made major progress towards explaining the underlying mechanisms by identifying a previously unknown sub-population of regulatory T cells.

The researchers discovered that this Treg cell type plays a decisive role in the development and manifestation of allergic asthma. They thus conclude that an increased level of this Treg cell population could serve as an early diagnostic indicator of a predisposition to allergic diseases. The results of the research undertaken by Bopp and his colleagues appear in the specialist journal Nature Immunology.

Their investigations showed that the Treg cell sub-population they discovered can be distinguished by a molecule known as immunoglobulin-like transcript 3 (ILT3), a protein which is expressed on the surface of these cells. This molecule probably serves as a “brake” leading to inactivation of the main function of Treg cells, which is to prevent excessive immune reactions.

"This finding is of considerable importance. It is the first time we have identified a sub-population of regulatory T cells whose ability to suppress immunological reactions can be influenced," explained Professor Tobias Bopp. In addition, the research team discovered that the development of ILT3 in Treg cells is regulated by protein kinase CK2. In general, protein kinases are mainly responsible for the transmission of extra-cellular signals within cells.

"So we now know not only how the newly discovered Treg cell sub-population is generated, but also how it can be manipulated. This helps us to better understand how allergic asthma develops and how it can be diagnosed earlier," concluded Bopp.

"This insight has massive potential, not only when it comes to the treatment of allergies. This could also represent an important starting point for the development of innovative approaches to the therapy of autoimmune diseases, tumors, and chronic infections. These are exactly the research areas on which we are currently focusing at the Research Center for Immunotherapy," emphasized Professor Hansjörg Schild, head of the research center at Mainz University.

Publication:
A. Ulges et al., Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo, Nature Immunology, 19 January 2015, DOI:10.1038/ni.3083

Contact:
Professor Dr. Tobias Bopp
Institute of Immunology at the Mainz University Medical Center and Research Center for Immunotherapy of Johannes Gutenberg University Mainz
Langenbeckstr. 1
55131 Mainz, GERMANY
phone +49 6131 17 6175
e-mail: boppt@uni-mainz.de

Press contact:
Oliver Kreft, Press and Public Relations, Mainz University Medical Center,
phone +49 6131 17-7424, fax +49 6131 17-3496, e-mail: pr@unimedizin-mainz.de
http://www.unimedizin-mainz.de/index.php?L=1

Weitere Informationen:

http://www.uni-mainz.de/presse/18045_ENG_HTML.php - press release ;
http://www.nature.com/ni/journal/vaop/ncurrent/full/ni.3083.html - original publication in NATURE IMMUNOLOGY

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>