Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists at Mainz University identify a new population of regulatory T-cells


Discovery improves understanding of the cause of allergic asthma and may serve as an early diagnostic marker / Publication in Nature Immunology

When the mucosal surfaces in the lungs of healthy people come into contact with allergenic substances, so-called regulatory T cells also known as Treg cells, are activated. These are capable of actively preventing the development of allergies.

However, if these regulatory mechanisms malfunction the cells of the immune system attack innocuous substances which enter the body from the environment, ultimately leading to the development of atopic diseases such as allergic asthma. In western countries, asthma is the most common chronic disease in children under the age of 15 years.

Professor Tobias Bopp, Professor Edgar Schmitt, and Dr. Alexander Ulges of the Institute of Immunology at the University Medical Center of Johannes Gutenberg University Mainz (JGU) have made major progress towards explaining the underlying mechanisms by identifying a previously unknown sub-population of regulatory T cells.

The researchers discovered that this Treg cell type plays a decisive role in the development and manifestation of allergic asthma. They thus conclude that an increased level of this Treg cell population could serve as an early diagnostic indicator of a predisposition to allergic diseases. The results of the research undertaken by Bopp and his colleagues appear in the specialist journal Nature Immunology.

Their investigations showed that the Treg cell sub-population they discovered can be distinguished by a molecule known as immunoglobulin-like transcript 3 (ILT3), a protein which is expressed on the surface of these cells. This molecule probably serves as a “brake” leading to inactivation of the main function of Treg cells, which is to prevent excessive immune reactions.

"This finding is of considerable importance. It is the first time we have identified a sub-population of regulatory T cells whose ability to suppress immunological reactions can be influenced," explained Professor Tobias Bopp. In addition, the research team discovered that the development of ILT3 in Treg cells is regulated by protein kinase CK2. In general, protein kinases are mainly responsible for the transmission of extra-cellular signals within cells.

"So we now know not only how the newly discovered Treg cell sub-population is generated, but also how it can be manipulated. This helps us to better understand how allergic asthma develops and how it can be diagnosed earlier," concluded Bopp.

"This insight has massive potential, not only when it comes to the treatment of allergies. This could also represent an important starting point for the development of innovative approaches to the therapy of autoimmune diseases, tumors, and chronic infections. These are exactly the research areas on which we are currently focusing at the Research Center for Immunotherapy," emphasized Professor Hansjörg Schild, head of the research center at Mainz University.

A. Ulges et al., Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo, Nature Immunology, 19 January 2015, DOI:10.1038/ni.3083

Professor Dr. Tobias Bopp
Institute of Immunology at the Mainz University Medical Center and Research Center for Immunotherapy of Johannes Gutenberg University Mainz
Langenbeckstr. 1
55131 Mainz, GERMANY
phone +49 6131 17 6175

Press contact:
Oliver Kreft, Press and Public Relations, Mainz University Medical Center,
phone +49 6131 17-7424, fax +49 6131 17-3496, e-mail:

Weitere Informationen: - press release ; - original publication in NATURE IMMUNOLOGY

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>