Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at Mainz University identify a new population of regulatory T-cells

09.02.2015

Discovery improves understanding of the cause of allergic asthma and may serve as an early diagnostic marker / Publication in Nature Immunology

When the mucosal surfaces in the lungs of healthy people come into contact with allergenic substances, so-called regulatory T cells also known as Treg cells, are activated. These are capable of actively preventing the development of allergies.

However, if these regulatory mechanisms malfunction the cells of the immune system attack innocuous substances which enter the body from the environment, ultimately leading to the development of atopic diseases such as allergic asthma. In western countries, asthma is the most common chronic disease in children under the age of 15 years.

Professor Tobias Bopp, Professor Edgar Schmitt, and Dr. Alexander Ulges of the Institute of Immunology at the University Medical Center of Johannes Gutenberg University Mainz (JGU) have made major progress towards explaining the underlying mechanisms by identifying a previously unknown sub-population of regulatory T cells.

The researchers discovered that this Treg cell type plays a decisive role in the development and manifestation of allergic asthma. They thus conclude that an increased level of this Treg cell population could serve as an early diagnostic indicator of a predisposition to allergic diseases. The results of the research undertaken by Bopp and his colleagues appear in the specialist journal Nature Immunology.

Their investigations showed that the Treg cell sub-population they discovered can be distinguished by a molecule known as immunoglobulin-like transcript 3 (ILT3), a protein which is expressed on the surface of these cells. This molecule probably serves as a “brake” leading to inactivation of the main function of Treg cells, which is to prevent excessive immune reactions.

"This finding is of considerable importance. It is the first time we have identified a sub-population of regulatory T cells whose ability to suppress immunological reactions can be influenced," explained Professor Tobias Bopp. In addition, the research team discovered that the development of ILT3 in Treg cells is regulated by protein kinase CK2. In general, protein kinases are mainly responsible for the transmission of extra-cellular signals within cells.

"So we now know not only how the newly discovered Treg cell sub-population is generated, but also how it can be manipulated. This helps us to better understand how allergic asthma develops and how it can be diagnosed earlier," concluded Bopp.

"This insight has massive potential, not only when it comes to the treatment of allergies. This could also represent an important starting point for the development of innovative approaches to the therapy of autoimmune diseases, tumors, and chronic infections. These are exactly the research areas on which we are currently focusing at the Research Center for Immunotherapy," emphasized Professor Hansjörg Schild, head of the research center at Mainz University.

Publication:
A. Ulges et al., Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo, Nature Immunology, 19 January 2015, DOI:10.1038/ni.3083

Contact:
Professor Dr. Tobias Bopp
Institute of Immunology at the Mainz University Medical Center and Research Center for Immunotherapy of Johannes Gutenberg University Mainz
Langenbeckstr. 1
55131 Mainz, GERMANY
phone +49 6131 17 6175
e-mail: boppt@uni-mainz.de

Press contact:
Oliver Kreft, Press and Public Relations, Mainz University Medical Center,
phone +49 6131 17-7424, fax +49 6131 17-3496, e-mail: pr@unimedizin-mainz.de
http://www.unimedizin-mainz.de/index.php?L=1

Weitere Informationen:

http://www.uni-mainz.de/presse/18045_ENG_HTML.php - press release ;
http://www.nature.com/ni/journal/vaop/ncurrent/full/ni.3083.html - original publication in NATURE IMMUNOLOGY

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>