Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Schizophrenia may be triggered by excess protein during brain development

24.11.2014

Rutgers researcher says too much causes abnormalities and faulty connections in laboratory studies

A gene associated with schizophrenia plays a role in brain development and may help to explain the biological process of the disease, according to new Rutgers research.

In the study, published in Biological Psychiatry, Bonnie Firestein, professor in the Department of Cell Biology and Neuroscience, says too much protein expressed by the NOS1AP gene, which has been associated with schizophrenia, causes abnormalities in brain structure and faulty connections between nerve cells that prevent them from communicating properly.

Firestein's research indicates that an overabundance of a protein in the NOS1AP gene resulted in the dendrites -- tree-like structures that allow cells to talk to each other and are essential to the functioning of the nervous system -- being stunted in the developing brains of rats.

She and her colleagues found that too much of the NOS1AP protein in brain cells didn't allow them to branch out and kept them deep within the neocortex, the portion of the brain responsible for higher functioning skills, such as spatial reasoning, conscious thought, motor commands, language development and sensory perception.

In the control group of rats in which NOS1AP chemical protein was not overexpressed, the cellular connections developed properly, with cells moving out to the outer layers of the neocortex and enabling the nerve cells to communicate.

"When the brain develops, it sets up a system of the right type of connectivity to make sure that communication can occur," says Firestein. "What we saw here was that the nerve cells didn't move to the correct locations and didn't have dendrites that branch out to make the connections that were needed."

Although scientists can't pinpoint for certain the exact cause of schizophrenia, they have determined that several genes, including NOS1AP, are associated with an increased risk for the disabling brain disorder and believe that when there is an imbalance of the chemical reactions in the brain, development can be disrupted.

Firestein has been working with Rutgers geneticist Linda Brzustowicz, professor and chair of the Department of Genetics, who co-authored the paper and first began investigating the genetic link between NOS1AP and schizophrenia a decade ago.

While about 1 percent of the general population suffers from schizophrenia, the risk increases to about 10 percent in the first degree relatives of an individual with the disease. NOS1AP has been identified as a risk factor in some families with multiple individuals affected with schizophrenia.

Since the prefrontal cortex, the part of the brain that is associated with schizophrenia, matures through adulthood, Firestein says it is possible that drug treatment therapies could be developed to target the disease in adolescents when schizophrenia is thought to develop and when symptoms appear.

"The next step would be to let the disease develop in the laboratory and try to treat the over expression of the protein with an anti-psychotic therapy to see if it works," says Firestein.

Robin Lally | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>