Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe and less invasive search for metastases

10.12.2015

How far has the melanoma spread? For the first time, melanoma metastases in sentinel lymph nodes can be detected safely and without surgery. The new procedure has now first been implemented for diagnosis by scientists of the medical faculty of the University Duisburg-Essen at the University Hospital Essen. It reduces the burden to the patients and the results are more precise than with the established diagnostic procedure.

Malignant melanoma is the most dangerous form of skin cancer. Every year more than 220,000 new cases are identified worldwide, and the annual incidence is climbing. The earlier one can make the diagnosis, the better the chances for a complete cure. If the tumor has already formed metastases, the prognosis for the patient becomes significantly worse. Since the tumor metastases spread primarily via the lymphatic system, one usually first assesses the lymph nodes closest to the primary tumor.


MSOT

UDE/UK-Essen

Typically, surgery would then follow to resect the lymph nodes. Thanks to the new imaging procedure established by Dr. Joachim Klode and Dr. Ingo Stoffels, surgery will not be necessary for many patients in the future.

Via a technology called “Multispectral Optoacoustic Tomography”, which has been developed by the German company iThera Medical, cancer cells in the lymph nodes closest to the primary tumor can be detected safely and less invasively.

First, the lymph nodes that should be diagnosed need to be identified. In contrary to today’s procedure, this no longer requires a radioactive tracer, but a dye called indocyanine green. Its drainage via the lymphatic vessels marks the sentinel lymph node. After identification, the lymph node would normally be surgically resected and assessed in the pathology. The patient needs to be hospitalized for several days for this procedure.

With optoacoustic technology, a pulsed laser illuminates the tissue through the skin. The light energy absorbed in the tissue generates an ultrasound signal which is acquired by a highly sensitive ultrasound detector.

Once the lymph node for diagnosis has been identified through detection of the injected dye, the images acquired at multiple wavelengths reveal the presence of melanin in the tissue. Melanin is a clear indicator for a possible metastasis. In the absence of such a signal, the patient can be given the all-clear. The patient then does not require a surgery.

In nearly half of the patients diagnosed with the new MSOT procedure, a metastasis could be ruled out. The usual surgical procedure with its burden on the patient would have been unnecessary in these cases. The results of this study are reported in the current edition of the scientific journal Science Translational Magazine.

The Skin Clinic is part of the West German Tumor Center (WTZ) at the University Hospital Essen. It is the country’s largest of its kind and has been awarded as oncologic excellence center. Oncology is an emphasis of the clinic, as is research and teaching at the University Hospital Essen and the Medical Faculty of the University Duisburg-Essen.

Further information: Christine Harrell, Tel. +49 (0)201 723-1615, christine.harrell@uk-essen.de

Weitere Informationen:

http://stm.sciencemag.org/content/7/317/317ra199.full

Beate Kostka | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-duisburg-essen.de/

Further reports about: Metastasis invasive lymph lymph node lymph nodes lymphatic metastases primary tumor

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>