Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers overcome suppression of immune response against bacterial pathogens

13.07.2017

A new therapeutic approach for pneumonia

Researchers from Charité – Universitätsmedizin Berlin were able to positively influence the immune response in severe viral and bacterial co-infection. Using a human lung tissue model, they were able to show that the immune mechanisms triggered by viral pathogens prevent the tissue from mounting an effective response against a simultaneously occurring bacterial infection.


Simulation of viral/bacterial pneumonia in a human lung tissue model.

Reproduced with permission of the European Respiratory Society ©: Eur Respir J 2017; 7: 1601953.

The researchers successfully tested a new drug-based treatment aimed at correcting this misguided immune response (which occurs, for instance, in cases of pneumonia). Results from this study have been published in the European Respiratory Journal*.

According to the World Health Organization (WHO), pneumonia counts among the five most frequent causes of death worldwide, with estimates suggesting that a child dies of pneumonia approximately every 15 seconds. Given that elderly people are also frequently affected, pneumonia remains one of the most significant health care issues of our time – with mortality rates unchanged for more than 70 years. There are several reasons behind this situation, the first being the development of increasing levels of bacterial resistance against antibiotic therapy.

Another is the fact that, so far, we have failed to find drugs which are effective against many of the pathogens responsible for pneumonia. “In most cases, the main problem is an immune or inflammatory response causing excessive organ damage,” explains Prof. Dr. Andreas Hocke of Charité's Department of Internal Medicine – Infectiology and Respiratory Diseases Unit.

In an effort to promote the development of new therapeutic approaches, the German Research Foundation (DFG) has been providing funding support to the SFB-TR84 Collaborative Research Center (which is dedicated to researching the fundamental mechanisms involved in pneumonia) since 2010.

As part of these DFG-funded efforts, Charité-based researchers, led by Prof. Dr. Andreas Hocke and Prof. Dr. Stefan Hippenstiel, have developed a human lung tissue model capable of simulating crucial characteristics of pneumonia. Most of the investigations of this type, which have been conducted across the globe, have been using cell cultures or animal models. Extrapolation limitations mean that some of the biomedical findings from these studies are difficult to translate to humans.

The new experimental approach allows researchers to create a three-dimensional tissue structure model, which makes it possible to simulate and study human pathogens and their disease mechanisms. “We were able to analyze the ways in which viruses and bacteria interact with human alveoli during the first hours following infection, and we were able to show that these differ from those seen in animal models,” says Dr. Johanna Berg, a researcher who is also the study's first author.

Working with Dr. Katja Zscheppang, she started by infecting human tissue with dangerous influenza viruses. The two researchers then proceeded to infect the tissue with pneumococci, in order to create a particularly severe form of pneumonia.

The immune system varies in its response to viruses and bacteria. The researchers worked on the premise that the immune system's response to the virus is directly responsible for inhibiting an equivalent response targeting bacterial pathogens. This places the bacteria at an advantage, and they are thus able to multiply inside, and cause damage to, the lung tissue. The experiment confirmed the researchers' assumptions. Following infection with the influenza virus, human lung tissue initially mounts a highly differentiated response.

“We were able to show that the immune response which is triggered by the virus has an adverse effect on a subsequent bacterial infection caused by pneumococci,” explains Dr. Berg. She adds: “The main factor involved in mediating the body's inflammatory response, interleukin-1 beta, is being inhibited in certain alveolar immune cells. This prevents any subsequent activation of the immune system, and may even suppress normal cellular repair mechanisms.”

In order to influence this faulty immune response, the researchers used a drug which is already undergoing clinical testing for use in other inflammatory diseases and cancer. “The substance inhibits tyrosine kinase-2, a protein responsible for mediating the lung's immune response to viral pathogens. By doing so, it restores the immune system's ability to fight the bacterial infection,” explains Prof. Hocke, the study's principal investigator.

Developed in conjunction with an industrial partner, this new therapeutic approach has been submitted for patent. The researchers are planning to conduct further studies involving human lung tissue models, which will look at potential feedback effects on the tissue's ability to fight viral pathogens. They are also hoping to develop a way to test their findings in a clinical trial.

*Johanna Berg, Katja Zscheppang, Diana Fatykhova, Mario Tönnies, Torsten T. Bauer, Paul Schneider, Jens Neudecker, Jens C. Rückert, Stephan Eggeling, Maria Schimek, Achim D. Gruber, Norbert Suttorp, Stefan Hippenstiel, Andreas C. Hocke. Tyk2 as a target for immune regulation in human viral/bacterial pneumonia. Eur Respir J 2017; 7: 1601953 [https://doi.org/10.1183/13993003.01953-2016]

Contact:
Prof. Dr. Andreas C. Hocke
Department of Internal Medicine – Infectiology and Respiratory Diseases
Charité – Universitätsmedizin Berlin
Tel: +49 30 450 553 477
Email: andreas.hocke@charite.de

Weitere Informationen:

http://www.charite.de
http://www.charite-inflab.de/hocke-lab/
https://www.sfb-tr84.de/

Manuela Zingl | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>