Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from the University Bonn Stimulate Larynx Muscles With Light

03.06.2015

Researchers at the University of Bonn have found a way to stimulate the larynx muscles of mice using light. In the long term, this method could be an option for the treatment of laryngeal paralysis, which causes difficulties in phonation and breathing. Their findings will be published in the scientific journal “Nature Communications.”

Muscles respond to nerve stimulation by contracting. Normally, light cannot be used to initiate these contractions. Several years ago, however, an exotic group of molecules known as Channelrhodopsins was discovered in green algae.


Dr. Tobias Bruegmann, Dr. Philipp Sasse and Dr. Tobias van Bremen (from left) use an optical fiber to demonstrate the functional principle.

Photo: Claudia Siebenhuener/University Hospital Bonn

Channelrhodopsins are ion channels that open when illuminated. When channelrhodopsins are appropriately packaged and injected into a muscle, they are integrating into individual muscle cells. As soon as these cells are exposed to light, the channels open and positively charged ions flow into the muscle cell, which then contracts.

This functional principle was discovered several years ago. In 2010, the Bonn-based working group used the same method to stimulate the heart in mice. However, laryngeal muscles are part of the skeletal musculature, “and skeletal muscles follow different rules,” says the head of the study, Dr. Philipp Sasse.

For instance, each fiber in a skeletal muscle can contract separately, which allows to control movements as well as muscle strength very precisely. In addition, unlike heart muscle, skeletal muscles can perform static contractions if they are repeatedly stimulated at high frequency.

“For the first time, we have been able to show that light pulses can also create static contractions,” says Dr. Tobias Bruegmann, the first author on the study. “Depending on where we point the light beam, we can also stimulate individual muscle groups – exactly the same way the body does it through the nerves.”

New treatment options

As a result, this method may point the way to new treatment approaches. In a few years, for instance, people with laryngeal paralysis could benefit from it. Laryngeal paralysis can occur after thyroid operations, and during other pathological processes that affect the laryngeal nerves.

The larynx plays an important role in speaking and swallowing, but most importantly in breathing: when you breathe, the muscles of the larynx pull the vocal cords apart so that air can flow into the lungs. In the event of complete paralysis, the patient can no longer breathe.

Unfortunately, electrical stimulators are little effective in restoring larynx function, “because there are different muscles with opposite function close together,” explains Dr. Tobias van Bremen, an ear, nose and throat doctor and one of the co-authors of the study.

“It is almost impossible to stimulate these muscles individually using electrodes.” The light method is a promising approach. The Bonn researchers have already shown that it works in animals – they were able to use light to open the air passage in the larynges of mice. However, several technical hurdles have to be overcome, such as bringing the Channelrhodopsin into the larynx musculature. The researchers in Bonn are currently testing gene transfer techniques and also optical stimulators.

Publication: Tobias Bruegmann, Tobias van Bremen, Christoph C. Vogt, Thorsten Send, Bernd K. Fleischmann & Philipp Sasse: Optogenetic control of contractile function in skeletal muscle; Nature Communications, date, DOI: 10.1038/ncomms8153

Media contacts:

Dr. Philipp Sasse
Institut für Physiologie I, Universität Bonn
Tel. ++49(0)228-6885212
Email: philipp.sasse@uni-bonn.de

Dr. Tobias Bruegmann
Institut für Physiologie I, Universität Bonn
Tel. ++49(0)228-6885217
Email: tbruegmann@uni-bonn.de

Dr. Tobias van Bremen
Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde/Chirurgie
Universitätsklinikum Bonn
Tel. ++49(0)228-28715556
Email: Tobias.Vanbremen@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>