Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 'idiosyncratic' brain patterns in autism

19.01.2015

Autism Spectrum Disorder (ASD) has been studied for many years, but there are still many more questions than answers. For example, some research into the brain functions of individuals with autism spectrum have found a lack of synchronization ('connectivity') between different parts of the brain that normally work in tandem. But other studies have found the exact opposite - over-synchronization in the brains of those with ASD.

New research recently published in Nature Neuroscience suggests that the various reports -- of both over- and under-connectivity -- may, in fact, reflect a deeper principle of brain function. Led by scientists at the Weizmann Institute and Carnegie Mellon University, the study shows that the brains of individuals with autism display unique synchronization patterns, something that could impact earlier diagnosis of the disorder and future treatments.


Autism Spectrum Disorder (ASD) has been studied for many years, but there are still many more questions than answers. For example, some research into the brain functions of individuals with autism spectrum have found a lack of synchronization ("connectivity") between different parts of the brain that normally work in tandem. But other studies have found the exact opposite -- over-synchronization in the brains of those with ASD.

New research recently published in Nature Neuroscience suggests that the various reports -- of both over- and under-connectivity -- may, in fact, reflect a deeper principle of brain function. Led by scientists at the Weizmann Institute and Carnegie Mellon University, the study shows that the brains of individuals with autism display unique synchronization patterns, something that could impact earlier diagnosis of the disorder and future treatments.

This image shows a comparison in the extent of the voxel deviation from the typical profile two individuals with autism. The individual with the more severe autism symptoms (right) showed greater deviations, both positive (more red) and negative (lighter blue), from the typical inter-hemispheric connectivity pattern compared to the individual with the less severe autism symptoms (left). In other words, the deviations from the control pattern was larger in the participant with the more severe symptoms.

Credit: Carnegie Mellon University

"Identifying brain profiles that differ from the pattern observed in typically developing individuals is crucial not only in that it allows researchers to begin to understand the differences that arise in ASD but, in this case, it opens up the possibility that there are many altered brain profiles all of which fall under the umbrella of 'autism' or 'autisms,'" said Marlene Behrmann, the George A. and Helen Dunham Cowan Professor of Cognitive Neuroscience at Carnegie Mellon and co-director of the Center for the Neural Basis of Cognition.

To investigate the issue of connectivity in ASD, the researchers analyzed data obtained from functional magnetic resonance imaging (fMRI) studies conducted while the participants were at rest. Data was collected from a large number of participants at multiple sites and handily assembled in the ABIDE database.

"Resting-state brain studies are important because that is when patterns emerge spontaneously, allowing us to see how various brain areas naturally connect and synchronize their activity," said Avital Hahamy, a Ph.D. student in Weizmann's Neurobiology Department.

A number of previous studies by these researchers and others suggest that these spontaneous patterns may provide a window into individual behavioral traits, including those that stray from the norm.

In a careful comparison of the details of these intricate synchronization patterns, the scientists discovered an intriguing difference between the control and ASD groups: the control participants' brains had substantially similar connectivity profiles across different individuals, while those with ASD showed a remarkably different phenomenon. Those with autism tended to display much more unique patterns -- each in its own, individual way. They realized that the synchronization patterns seen in the control group were "conformist" relative to those in the ASD group, which they termed "idiosyncratic."

Differences between the synchronization patterns in the autism and control groups could be explained by the way individuals in the two groups interact and communicate with their environment.

"From a young age, the average, typical person's brain networks get molded by intensive interaction with people and the mutual environmental factors," Hahamy said. "Such shared experiences could tend to make the synchronization patterns in the control group's resting brains more similar to each other. It is possible that in ASD, as interactions with the environment are disrupted, each one develops a more uniquely individualistic brain organization pattern."

The researchers emphasize that this explanation is only tentative; much more research will be needed to fully uncover the range of factors that may lead to ASD-related idiosyncrasies. They also suggest that further research into how and when different individuals establish particular brain patterns could help in the future development of early diagnosis and treatment for autism disorders.

###

In addition to Behrmann and Hahamy, the research team included Weizmann Institute's Rafael Malach.

The Simons Foundation (Autism Research Initiative) funded this research.

As the birthplace of artificial intelligence and cognitive psychology, Carnegie Mellon has been a leader in the study of brain and behavior for more than 50 years. The university has created some of the first cognitive tutors, helped to develop the Jeopardy-winning Watson, founded a groundbreaking doctoral program in neural computation, and completed cutting-edge work in understanding the genetics of autism. Building on its strengths in biology, computer science, psychology, statistics and engineering, CMU recently launched BrainHubSM, a global initiative that focuses on how the structure and activity of the brain give rise to complex behaviors.

Media Contact

Shilo Rea
shilo@cmu.edu
412-268-6094

 @CMUScience

http://www.cmu.edu 

Shilo Rea | EurekAlert!

Further reports about: ASD Neuroscience Weizmann activity cognitive diagnosis synchronization

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>