Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 'idiosyncratic' brain patterns in autism

19.01.2015

Autism Spectrum Disorder (ASD) has been studied for many years, but there are still many more questions than answers. For example, some research into the brain functions of individuals with autism spectrum have found a lack of synchronization ('connectivity') between different parts of the brain that normally work in tandem. But other studies have found the exact opposite - over-synchronization in the brains of those with ASD.

New research recently published in Nature Neuroscience suggests that the various reports -- of both over- and under-connectivity -- may, in fact, reflect a deeper principle of brain function. Led by scientists at the Weizmann Institute and Carnegie Mellon University, the study shows that the brains of individuals with autism display unique synchronization patterns, something that could impact earlier diagnosis of the disorder and future treatments.


Autism Spectrum Disorder (ASD) has been studied for many years, but there are still many more questions than answers. For example, some research into the brain functions of individuals with autism spectrum have found a lack of synchronization ("connectivity") between different parts of the brain that normally work in tandem. But other studies have found the exact opposite -- over-synchronization in the brains of those with ASD.

New research recently published in Nature Neuroscience suggests that the various reports -- of both over- and under-connectivity -- may, in fact, reflect a deeper principle of brain function. Led by scientists at the Weizmann Institute and Carnegie Mellon University, the study shows that the brains of individuals with autism display unique synchronization patterns, something that could impact earlier diagnosis of the disorder and future treatments.

This image shows a comparison in the extent of the voxel deviation from the typical profile two individuals with autism. The individual with the more severe autism symptoms (right) showed greater deviations, both positive (more red) and negative (lighter blue), from the typical inter-hemispheric connectivity pattern compared to the individual with the less severe autism symptoms (left). In other words, the deviations from the control pattern was larger in the participant with the more severe symptoms.

Credit: Carnegie Mellon University

"Identifying brain profiles that differ from the pattern observed in typically developing individuals is crucial not only in that it allows researchers to begin to understand the differences that arise in ASD but, in this case, it opens up the possibility that there are many altered brain profiles all of which fall under the umbrella of 'autism' or 'autisms,'" said Marlene Behrmann, the George A. and Helen Dunham Cowan Professor of Cognitive Neuroscience at Carnegie Mellon and co-director of the Center for the Neural Basis of Cognition.

To investigate the issue of connectivity in ASD, the researchers analyzed data obtained from functional magnetic resonance imaging (fMRI) studies conducted while the participants were at rest. Data was collected from a large number of participants at multiple sites and handily assembled in the ABIDE database.

"Resting-state brain studies are important because that is when patterns emerge spontaneously, allowing us to see how various brain areas naturally connect and synchronize their activity," said Avital Hahamy, a Ph.D. student in Weizmann's Neurobiology Department.

A number of previous studies by these researchers and others suggest that these spontaneous patterns may provide a window into individual behavioral traits, including those that stray from the norm.

In a careful comparison of the details of these intricate synchronization patterns, the scientists discovered an intriguing difference between the control and ASD groups: the control participants' brains had substantially similar connectivity profiles across different individuals, while those with ASD showed a remarkably different phenomenon. Those with autism tended to display much more unique patterns -- each in its own, individual way. They realized that the synchronization patterns seen in the control group were "conformist" relative to those in the ASD group, which they termed "idiosyncratic."

Differences between the synchronization patterns in the autism and control groups could be explained by the way individuals in the two groups interact and communicate with their environment.

"From a young age, the average, typical person's brain networks get molded by intensive interaction with people and the mutual environmental factors," Hahamy said. "Such shared experiences could tend to make the synchronization patterns in the control group's resting brains more similar to each other. It is possible that in ASD, as interactions with the environment are disrupted, each one develops a more uniquely individualistic brain organization pattern."

The researchers emphasize that this explanation is only tentative; much more research will be needed to fully uncover the range of factors that may lead to ASD-related idiosyncrasies. They also suggest that further research into how and when different individuals establish particular brain patterns could help in the future development of early diagnosis and treatment for autism disorders.

###

In addition to Behrmann and Hahamy, the research team included Weizmann Institute's Rafael Malach.

The Simons Foundation (Autism Research Initiative) funded this research.

As the birthplace of artificial intelligence and cognitive psychology, Carnegie Mellon has been a leader in the study of brain and behavior for more than 50 years. The university has created some of the first cognitive tutors, helped to develop the Jeopardy-winning Watson, founded a groundbreaking doctoral program in neural computation, and completed cutting-edge work in understanding the genetics of autism. Building on its strengths in biology, computer science, psychology, statistics and engineering, CMU recently launched BrainHubSM, a global initiative that focuses on how the structure and activity of the brain give rise to complex behaviors.

Media Contact

Shilo Rea
shilo@cmu.edu
412-268-6094

 @CMUScience

http://www.cmu.edu 

Shilo Rea | EurekAlert!

Further reports about: ASD Neuroscience Weizmann activity cognitive diagnosis synchronization

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>