Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover an epilepsy switch

26.10.2015

Scientists at the University of Bonn and the Hebrew University of Jerusalem (Israel) have decoded a central signal cascade associated with epileptic seizures. If the researchers blocked a central switch in epileptic mice, the frequency and severity of the seizures decreased. Using a novel technology, it was possible to observe the processes prior to the occurrence of epileptic seizures in living animals. The results are now being published in the journal "Nature Communications".

Approximately one out of every 20 people in the course of his or her life suffers an epileptic attack, during which the nerve cells get out of their usual rhythm and fire in a very rapid frequency. This results in seizures. Such synchronous discharges in the brain occur most frequently in the temporal lobe. Often, a seizure disorder develops after a delay following transient brain damage - for example due to injury or inflammation. So-called ion channels are involved in the transfer of signals in the brain; these channels act like a doorman to regulate the entry of calcium ions in the nerve cells.


Fluorescence in the brain of a living mouse: The degree of fluorescence is reflected through colors, whereby the intensity decreases from red to violet.

© Image: Karen von Loo/Laboratory of Albert Becker

"It has also been known for a long time that following transient severe brain injury and prior to an initial spontaneous epileptic seizure, the concentration of free zinc ions increases in the hippocampus. But science has been puzzled about the significance of this phenomenon," says Prof. Dr. Albert J. Becker from the Institute of Neuropathology of the University of Bonn. The hippocampus, located in the temporal lobe, is a central switching station in the brain.

MTF1 acts like a switch in the brain

The team of Prof. Becker, together with scientists from the departments of Experimental Epileptology and Neuroradiology of the University of Bonn Hospital as well as from the Hebrew University in Jerusalem (Israel), have now decoded a signaling pathway which is involved in the onset of a seizure disorder. If the number of zinc ions increases following transient severe brain damage, these ions dock in greater numbers onto a switch, the so-called metal-regulatory transcription factor 1 (MTF1). This leads to a large increase in the amount of a special calcium ion channel in the nerve cells and overall, this significantly boosts the risk of epileptic seizures.

The scientists demonstrated the fact that the transcription factor MTF1 plays a central role in this connection using an experiment on mice suffering from epilepsy. "Using a genetic method, we inhibited MTF1 in the epileptic mice and as a result, the seizures in the animals were much rarer and weaker," says lead author Dr. Karen M.J. van Loo who is conducting research in the team working with Prof. Becker.

New technology enables observations of the living brain

The scientists used a novel method during their examinations. With the help of viruses, the researchers introduced fluorescing molecules in the brains of mice and these molecules always glowed when the production of the special calcium ion channel was activated. The beams of light emanating from the fluorescence molecules can be measured through the top of the mice's skulls. This makes it possible to examine the processes which take place during the development of epilepsy in a living animal.

"If the fluorescence molecules glow, this indicates that the mouse is developing chronic epileptic seizures," says the molecular biologist Prof. Dr. Susanne Schoch from the department of Neuropathology at the University of Bonn. The researchers also see a possible potential in this new technology for novel diagnostic approaches in humans.

Hope for new options for diagnosis and treatment

The scientists hope that new treatment options will open up for epilepsy patients as a result of their discovery. "About one-third of patients with temporal lobe epilepsy do not respond to medications. Our research is therefore increasingly focusing on new therapeutic options that have few side effects," states Prof. Becker. If the zinc ions or the transcription factor MTF1 were specifically inhibited in the brain, it is possible that the development of a seizure disorder could be prevented. "However, this still needs to be demonstrated in further studies," says Dr. Karen M.J. van Loo.

Publication: Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1, Nature Communications, DOI: 10.1038/ncomms9688

Media contact information:

Prof. Dr. Albert J. Becker
Institute of Neuropathology
Tel. 0228/28711352
E-Mail: albert_becker@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>