Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on injectable oriented hydrogels for spinal cord repair

17.03.2015

The research objective of Dr.-Ing. Laura De Laporte, junior group leader at DWI – Leibniz Institute for Interactive Materials in Aachen, is to develop a minimally invasive therapy for spinal cord injury. Her goal and her scientific approach to develop an injectable material with the ability to provide biochemical and physical guidance for regenerating nerves across the injury site, was selected by the European Research Council (ERC). Laura De Laporte now receives a 1.5 Million Euro ERC Starting Grant for her project ANISOGEL.

Spinal cord injury affects approximately two million people worldwide and is devastating as it leads to a loss of motor and sensory function below the point of injury. Regenerative therapies therefore try to restore nerve tracts and their function.


Dr.-Ing. Laura De Laporte receives an ERC Starting Grant

Photo: Phatcharin Tha-in

Human neural stem cells or oligodendrocytes, which form the myelin sheet around the nerve cells, have been successfully transplanted into the damaged area and have created a spark of hope. To support these transplanted and other native cells at the injury site, and to guide neuron growth across this area, scientists are also investigating nerve bridges that are made of biomaterials, provide functional domains, and release growths factors.

Unfortunately, such implants still face the challenge to stimulate the growing nerves to cross the point of injury and reenter the healthy spinal cord to rebuild functional connections.

In her project ANISOGEL, Laura De Laporte will engineer an injectable biomaterial that can be used as a matrix for a minimally invasive therapy to support oriented regeneration of damaged nerves. The material is based on a soft, water-rich polymeric network (hydrogel), which gels in situ and can be designed to mimic the conditions of the natural cell environment.

The physical, chemical, and biological properties of these gels can be tailored bottom-up to resemble the body’s own extracellular matrix that provides mechanical and biological support to the cells.

“A hydrogel-based approach is not new. The innovative aspect about ANISOGEL is that we want to synthesize a material that can be hierarchically structured and form an anisotropic architecture in situ,” explains De Laporte.

“This will improve the cells’ spatial orientation, which is crucial for nerve repair. The hydrogel will be further modified with biological signaling molecules to create an environment that stimulates cellular processes necessary for spinal cord regeneration and to regain functionality.”

Laura De Laporte received her Masters in Chemical Engineering at the University of Ghent and obtained her PhD in the laboratory of Prof. Lonnie Shea at Northwestern University in the United States. There, she focused on the development of multiple channel bridges with the ability for DNA and protein delivery for spinal cord repair.

As a post-doctoral researcher at EPFL (Switzerland) in the laboratory of Prof. Jeffrey Hubbell, she engineered extracellular matrix-like hydrogels for tissue and nerve repair. She started her junior research group at DWI in October 2013. With the ERC Starting Grant, the European Research Council supports her work for the next five years.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft
Further information:
http://www.dwi.rwth-aachen.de

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>