Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in understanding of hereditary disease of lymphatic vessels

23.08.2004


A study from the Ludwig Institute for Cancer Research (LICR) Affiliate Center at the University of Helsinki in Finland has shed light on the development of lymphatic vasculature and valves, and may help to develop better treatments for lymphedema.


Normal lymphatic capillaries (light blue) are devoid of smooth muscle cells, whereas the collecting lymphatic vessels are surounded by a smooth muscle cell layer (orange), which pumps the lymph forward. They also contain valves that prevent the backflow of the lymph. The lymphatic capillaries in the legs of patients who have FOXC2 mutations are abnormally shaped and surrounded by smooth muscle cells. This prevents the efficient uptake and flow of the lymph. Lack of valves in the collecting lymphatics leads to lymph backflow. (Drawing by Paula Saarinen)


Normal lymphatic capillaries (green) dare devoid of smooth muscle cells (red), while the blood vessels are surroundet by a smooth muscle cell layer (A). Mutations in the FOXC2 gene lead to abnormally shaped lymphatic capillaries, which are surrounded by smooth muscle cells (B).



The disease, which results from damaged or absent lymphatic vessels, may be inherited or may be a side-effect of the surgical removal of tumors. Lymphatic vessels normally remove fluid and proteins escaping from blood capillaries into surrounding tissues, and lymphedema is characterized by the disabling swelling of legs, and sometimes arms, that results when the lymphatic vessels are unable to clear the lymph from the tissues. The current study, which was published today in Nature Medicine, has uncovered a fundamental mechanism of the formation of lymphatic vessels.

The LICR team, together with collaborators from the UK, Japan, USA and Austria, analyzed a hereditary form of lymphedema, known as Lymphedema Distichiasis (LD), which is caused by mutations in a gene called FOXC2. The team found that the lymphatic vessels of LD patients are abnormally shaped and covered with smooth muscle cells that are usually present only on blood vessels and on larger, collecting lymphatic vessels. In addition, mutations in Foxc2 led to a lack of lymphatic valves, which prevent the reflux of lymph. This is the first study that describes a gene critical for the formation of lymphatic valves, and regulation of the interaction between lymphatic endothelial cells and vascular smooth muscle cells.


According to Professor Kari Alitalo, the senior author of the study, the insights gleaned into FOXC2 function may be applicable in the development of therapies for several disorders that affect lymphatic vessel formation. “We are currently working on approaches to stimulate the proper formation of lymphatic vessels in people who suffer from lymphedema. However, FOXC2 is produced in endothelial cells of both lymphatic and venous valves, so these results may also turn out to be important for the understanding and treatment of chronic venous insufficiency, which affects 5-25 % of the adult population.”

Sarah White | alfa
Further information:
http://www.licr.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>