Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in understanding of hereditary disease of lymphatic vessels

23.08.2004


A study from the Ludwig Institute for Cancer Research (LICR) Affiliate Center at the University of Helsinki in Finland has shed light on the development of lymphatic vasculature and valves, and may help to develop better treatments for lymphedema.


Normal lymphatic capillaries (light blue) are devoid of smooth muscle cells, whereas the collecting lymphatic vessels are surounded by a smooth muscle cell layer (orange), which pumps the lymph forward. They also contain valves that prevent the backflow of the lymph. The lymphatic capillaries in the legs of patients who have FOXC2 mutations are abnormally shaped and surrounded by smooth muscle cells. This prevents the efficient uptake and flow of the lymph. Lack of valves in the collecting lymphatics leads to lymph backflow. (Drawing by Paula Saarinen)


Normal lymphatic capillaries (green) dare devoid of smooth muscle cells (red), while the blood vessels are surroundet by a smooth muscle cell layer (A). Mutations in the FOXC2 gene lead to abnormally shaped lymphatic capillaries, which are surrounded by smooth muscle cells (B).



The disease, which results from damaged or absent lymphatic vessels, may be inherited or may be a side-effect of the surgical removal of tumors. Lymphatic vessels normally remove fluid and proteins escaping from blood capillaries into surrounding tissues, and lymphedema is characterized by the disabling swelling of legs, and sometimes arms, that results when the lymphatic vessels are unable to clear the lymph from the tissues. The current study, which was published today in Nature Medicine, has uncovered a fundamental mechanism of the formation of lymphatic vessels.

The LICR team, together with collaborators from the UK, Japan, USA and Austria, analyzed a hereditary form of lymphedema, known as Lymphedema Distichiasis (LD), which is caused by mutations in a gene called FOXC2. The team found that the lymphatic vessels of LD patients are abnormally shaped and covered with smooth muscle cells that are usually present only on blood vessels and on larger, collecting lymphatic vessels. In addition, mutations in Foxc2 led to a lack of lymphatic valves, which prevent the reflux of lymph. This is the first study that describes a gene critical for the formation of lymphatic valves, and regulation of the interaction between lymphatic endothelial cells and vascular smooth muscle cells.


According to Professor Kari Alitalo, the senior author of the study, the insights gleaned into FOXC2 function may be applicable in the development of therapies for several disorders that affect lymphatic vessel formation. “We are currently working on approaches to stimulate the proper formation of lymphatic vessels in people who suffer from lymphedema. However, FOXC2 is produced in endothelial cells of both lymphatic and venous valves, so these results may also turn out to be important for the understanding and treatment of chronic venous insufficiency, which affects 5-25 % of the adult population.”

Sarah White | alfa
Further information:
http://www.licr.org

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>