Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwestern widens ’treatment window’ for brain injury and stroke

03.09.2003


In the treatment of stroke, there is currently only a three-hour "window of therapeutic opportunity" to prevent additional brain cell damage and only one medication approved to improve blood flow to oxygen-deprived neurons near the injury, thereby minimizing potentially debilitating side effects.



Now, scientists from Northwestern University report that a single injection of a chemical they created -- given up to six hours after brain injury or stroke -- protects against additional brain cell death for a week or longer. An article describing the new compound and its activity in the body appears in the September online issue of the Bioorganic and Medicinal Chemistry Letters.

The compound inhibits activity of an enzyme called death-associated protein kinase (DAPK), known to be an early player in the chain of molecular events leading to apoptosis, or programmed cell death. Earlier studies showed that levels of DAPK increase markedly prior to neuron death and that apoptosis increases rapidly hours after the onset of a stroke in laboratory models.


"Results of this study support the idea that targeting protein kinases, which function early in programmed cell death pathways, could identify new therapeutic approaches to acute brain injury," said Northwestern scientist Martin Watterson, who led the study. Watterson is John G. Searle Professor of Molecular Biology and Biochemistry, professor of molecular pharmacology and biological chemistry at the Feinberg School of Medicine and director of the Drug Discovery Program at Northwestern University.

The timing of DAPK’s increase in those early studies, coupled with its ability to initiate cell death, suggested to Watterson and co-researchers that a drug that inhibits DAPK activity might prevent or reduce neuron death in the critical period following brain injury or stroke.

The researchers created a small-molecule DAPK inhibitor based on data derived from their own earlier experiments. They had developed a quantitative assay for DAPK that subsequently helped them design methods for identifying candidate DAPK inhibitors, and later, with collaborators at Vanderbilt University, determined the three-dimensional structure of a region on the DAPK molecule that is essential to triggering programmed cell death.

While initial results with the DAPK inhibitor provide a precedent for drug discovery research in acute brain injury, Watterson explained that the compound’s molecular properties did not make it an ideal candidate for drug development. However, now that a candidate inhibitor has been identified, the researchers will use the region on the DAPK molecule as a framework and employ fragment-based, structure-assisted drug design technology to create related, or analog, inhibitors with more desirable molecular properties.

Other researchers on this study were Anastasia V. Velentza, Mark S. Wainwright, Magdalena Zasadzki, Saalida Mirzoeva, Andrew M. Schumacher and Pamela J. Focia, Feinberg School of Medicine at Northwestern University; Jacques Haiech, Universite’ Louis Pasteur, Illkirch, France; and Martin Egli, Vanderbilt University, Nashville.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>