Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwestern widens ’treatment window’ for brain injury and stroke

03.09.2003


In the treatment of stroke, there is currently only a three-hour "window of therapeutic opportunity" to prevent additional brain cell damage and only one medication approved to improve blood flow to oxygen-deprived neurons near the injury, thereby minimizing potentially debilitating side effects.



Now, scientists from Northwestern University report that a single injection of a chemical they created -- given up to six hours after brain injury or stroke -- protects against additional brain cell death for a week or longer. An article describing the new compound and its activity in the body appears in the September online issue of the Bioorganic and Medicinal Chemistry Letters.

The compound inhibits activity of an enzyme called death-associated protein kinase (DAPK), known to be an early player in the chain of molecular events leading to apoptosis, or programmed cell death. Earlier studies showed that levels of DAPK increase markedly prior to neuron death and that apoptosis increases rapidly hours after the onset of a stroke in laboratory models.


"Results of this study support the idea that targeting protein kinases, which function early in programmed cell death pathways, could identify new therapeutic approaches to acute brain injury," said Northwestern scientist Martin Watterson, who led the study. Watterson is John G. Searle Professor of Molecular Biology and Biochemistry, professor of molecular pharmacology and biological chemistry at the Feinberg School of Medicine and director of the Drug Discovery Program at Northwestern University.

The timing of DAPK’s increase in those early studies, coupled with its ability to initiate cell death, suggested to Watterson and co-researchers that a drug that inhibits DAPK activity might prevent or reduce neuron death in the critical period following brain injury or stroke.

The researchers created a small-molecule DAPK inhibitor based on data derived from their own earlier experiments. They had developed a quantitative assay for DAPK that subsequently helped them design methods for identifying candidate DAPK inhibitors, and later, with collaborators at Vanderbilt University, determined the three-dimensional structure of a region on the DAPK molecule that is essential to triggering programmed cell death.

While initial results with the DAPK inhibitor provide a precedent for drug discovery research in acute brain injury, Watterson explained that the compound’s molecular properties did not make it an ideal candidate for drug development. However, now that a candidate inhibitor has been identified, the researchers will use the region on the DAPK molecule as a framework and employ fragment-based, structure-assisted drug design technology to create related, or analog, inhibitors with more desirable molecular properties.

Other researchers on this study were Anastasia V. Velentza, Mark S. Wainwright, Magdalena Zasadzki, Saalida Mirzoeva, Andrew M. Schumacher and Pamela J. Focia, Feinberg School of Medicine at Northwestern University; Jacques Haiech, Universite’ Louis Pasteur, Illkirch, France; and Martin Egli, Vanderbilt University, Nashville.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>