Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwestern widens ’treatment window’ for brain injury and stroke

03.09.2003


In the treatment of stroke, there is currently only a three-hour "window of therapeutic opportunity" to prevent additional brain cell damage and only one medication approved to improve blood flow to oxygen-deprived neurons near the injury, thereby minimizing potentially debilitating side effects.



Now, scientists from Northwestern University report that a single injection of a chemical they created -- given up to six hours after brain injury or stroke -- protects against additional brain cell death for a week or longer. An article describing the new compound and its activity in the body appears in the September online issue of the Bioorganic and Medicinal Chemistry Letters.

The compound inhibits activity of an enzyme called death-associated protein kinase (DAPK), known to be an early player in the chain of molecular events leading to apoptosis, or programmed cell death. Earlier studies showed that levels of DAPK increase markedly prior to neuron death and that apoptosis increases rapidly hours after the onset of a stroke in laboratory models.


"Results of this study support the idea that targeting protein kinases, which function early in programmed cell death pathways, could identify new therapeutic approaches to acute brain injury," said Northwestern scientist Martin Watterson, who led the study. Watterson is John G. Searle Professor of Molecular Biology and Biochemistry, professor of molecular pharmacology and biological chemistry at the Feinberg School of Medicine and director of the Drug Discovery Program at Northwestern University.

The timing of DAPK’s increase in those early studies, coupled with its ability to initiate cell death, suggested to Watterson and co-researchers that a drug that inhibits DAPK activity might prevent or reduce neuron death in the critical period following brain injury or stroke.

The researchers created a small-molecule DAPK inhibitor based on data derived from their own earlier experiments. They had developed a quantitative assay for DAPK that subsequently helped them design methods for identifying candidate DAPK inhibitors, and later, with collaborators at Vanderbilt University, determined the three-dimensional structure of a region on the DAPK molecule that is essential to triggering programmed cell death.

While initial results with the DAPK inhibitor provide a precedent for drug discovery research in acute brain injury, Watterson explained that the compound’s molecular properties did not make it an ideal candidate for drug development. However, now that a candidate inhibitor has been identified, the researchers will use the region on the DAPK molecule as a framework and employ fragment-based, structure-assisted drug design technology to create related, or analog, inhibitors with more desirable molecular properties.

Other researchers on this study were Anastasia V. Velentza, Mark S. Wainwright, Magdalena Zasadzki, Saalida Mirzoeva, Andrew M. Schumacher and Pamela J. Focia, Feinberg School of Medicine at Northwestern University; Jacques Haiech, Universite’ Louis Pasteur, Illkirch, France; and Martin Egli, Vanderbilt University, Nashville.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>