Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Let there be light

Photodynamic therapy breakthrough in cancer treatment

Researchers from the Peninsula Medical School in Cornwall, UK, have modified a photodynamic therapy (PDT) treatment that combines a topically applied cream with visible light to destroy cancer cells while leaving surrounding tissue unharmed.

The cream is applied directly to skin cancers and pre-cancers, which then naturally produces a photosensitive drug. A special red light is then shone on the tumour a few hours later, to activate this light sensitive compound. This results in cellular damage and the destruction of the tumour.

This technique results in reduced scarring and little or no damage to the surrounding healthy cells.

By adding the iron chelator CP94 to the cream, the research team have found that the effects of PDT are greatly improved and achieve greater reductions in tumour depth in tumours currently too thick to be treated easily by the non-enhanced form of this treatment.

This is the first time in the world that PDT trials of this modified PDT treatment have been carried out involving humans. Trials involving patients have taken place at clinics at the Royal Cornwall Hospitals NHS Trust in Truro.

PDT is achieving success in the treatment of actinic keratoses (lesions that can develop after years of exposure to UV light); Bowen’s disease (the growth of abnormal calls that can turn into skin cancer, and that is partly due to long-term exposure to the sun); and basal cell carcinoma (the most common form of skin cancer).

The work of the Peninsula Medical School in this area of research is funded in part by the Duchy Health Charity in Cornwall.

Dr. Alison Curnow from the Peninsula Medical School in Cornwall, commented: “PDT is very effective non-surgical treatment for certain types of dermatological cancers and precancers. It normally destroys the tumour without scarring or damage to surrounding healthy cells.”

She added: “Through years of research we have been able to develop a modified PDT treatment enabling for the first time for thicker nodular basal cell carcinomas to be treated effectively with a single PDT treatment. This is important, as this is a very common form of skin cancer.”

The work of Dr. Curnow and her team are part of a developing research theme for the Peninsula Medical School, which is Environment and Human Health. Operated mainly from the Peninsula Medical School in Cornwall, but with collaboration from colleagues within the institution across the South West of England, this research theme seeks to identify and study the links between our health and well-being and the environment.

More information is available by logging on at

Care Study

Graham O’Neill, 54, is technical marketing director at Imerys Minerals in Cornwall and lives near Mevagissey.

Graham was raised in the West Indies, and although his mother was very careful about protecting him from the sun, his exposure to the sun’s rays at an early age led to the discovery of melanomas on his skin in 1983.

“Back then the treatments were quite severe,” said Graham. “It involved liquid nitrogen, scraping out the melanoma and cauterizing it. Not only was this very painful, but it also left scarring.”

He now receives treatment with PDT, which is much better for him. He said: “The treatment is extremely good. From a personal point of view it is much less unpleasant and seems to be more effective. It also treats quite a big area in one go, which means fewer treatments in the long run. The other issue with melanomas is that they keep coming back. With PDT I have found that they do not return as frequently and, when they do, they are far less severe.”

On balance Graham is delighted with the treatments, which he has been receiving at Treliske Hospital, Royal Cornwall Hospitals NHS Trust in Truro. He said: “Compared with the old way of doing things, PDT is a fantastic therapy and one which I would recommend to other patients. It is very exciting that the Peninsula Medical School is taking such a worldwide lead in research in this area.”

Andrew Gould | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>