Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let there be light

27.05.2008
Photodynamic therapy breakthrough in cancer treatment

Researchers from the Peninsula Medical School in Cornwall, UK, have modified a photodynamic therapy (PDT) treatment that combines a topically applied cream with visible light to destroy cancer cells while leaving surrounding tissue unharmed.

The cream is applied directly to skin cancers and pre-cancers, which then naturally produces a photosensitive drug. A special red light is then shone on the tumour a few hours later, to activate this light sensitive compound. This results in cellular damage and the destruction of the tumour.

This technique results in reduced scarring and little or no damage to the surrounding healthy cells.

By adding the iron chelator CP94 to the cream, the research team have found that the effects of PDT are greatly improved and achieve greater reductions in tumour depth in tumours currently too thick to be treated easily by the non-enhanced form of this treatment.

This is the first time in the world that PDT trials of this modified PDT treatment have been carried out involving humans. Trials involving patients have taken place at clinics at the Royal Cornwall Hospitals NHS Trust in Truro.

PDT is achieving success in the treatment of actinic keratoses (lesions that can develop after years of exposure to UV light); Bowen’s disease (the growth of abnormal calls that can turn into skin cancer, and that is partly due to long-term exposure to the sun); and basal cell carcinoma (the most common form of skin cancer).

The work of the Peninsula Medical School in this area of research is funded in part by the Duchy Health Charity in Cornwall.

Dr. Alison Curnow from the Peninsula Medical School in Cornwall, commented: “PDT is very effective non-surgical treatment for certain types of dermatological cancers and precancers. It normally destroys the tumour without scarring or damage to surrounding healthy cells.”

She added: “Through years of research we have been able to develop a modified PDT treatment enabling for the first time for thicker nodular basal cell carcinomas to be treated effectively with a single PDT treatment. This is important, as this is a very common form of skin cancer.”

The work of Dr. Curnow and her team are part of a developing research theme for the Peninsula Medical School, which is Environment and Human Health. Operated mainly from the Peninsula Medical School in Cornwall, but with collaboration from colleagues within the institution across the South West of England, this research theme seeks to identify and study the links between our health and well-being and the environment.

More information is available by logging on at www.pms.ac.uk.

Care Study

Graham O’Neill, 54, is technical marketing director at Imerys Minerals in Cornwall and lives near Mevagissey.

Graham was raised in the West Indies, and although his mother was very careful about protecting him from the sun, his exposure to the sun’s rays at an early age led to the discovery of melanomas on his skin in 1983.

“Back then the treatments were quite severe,” said Graham. “It involved liquid nitrogen, scraping out the melanoma and cauterizing it. Not only was this very painful, but it also left scarring.”

He now receives treatment with PDT, which is much better for him. He said: “The treatment is extremely good. From a personal point of view it is much less unpleasant and seems to be more effective. It also treats quite a big area in one go, which means fewer treatments in the long run. The other issue with melanomas is that they keep coming back. With PDT I have found that they do not return as frequently and, when they do, they are far less severe.”

On balance Graham is delighted with the treatments, which he has been receiving at Treliske Hospital, Royal Cornwall Hospitals NHS Trust in Truro. He said: “Compared with the old way of doing things, PDT is a fantastic therapy and one which I would recommend to other patients. It is very exciting that the Peninsula Medical School is taking such a worldwide lead in research in this area.”

Andrew Gould | EurekAlert!
Further information:
http://www.pms.ac.uk/pms/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>