Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Children’s Hospital Boston researchers use therapeutic cloning to create functional tissue in cows


Cloned cells organize into muscle, heart and kidney tissue; animals show no rejection

Boston - In a study published in the July issue of Nature Biotechnology, available on the internet June 3, researchers from Children’s Hospital Boston and colleagues demonstrated that laboratory-engineered tissues created from heart, skeletal, and renal cells cloned from cows, then transplanted back into the animals, developed into functional tissues and caused no signs of rejection.

"The study is proof of principle that therapeutic cloning can be used to create tissues without the threat of rejection," says Anthony Atala, M.D., director of Tissue Engineering at Children’s Hospital Boston and the senior author on the paper. "While more work needs to be done, this demonstrates the potential use of this technology."

As many as 3,000 Americans die every day from diseases that may someday be treatable with tissues created through stem cells, according to the Centers for Disease Control. Somatic cell nuclear transfer ("therapeutic cloning"), which is one way to derive stem cells, shows potential in generating functional replacement cells such as insulin-producing cells associated with diabetes. It also shows promise in reconstituting more complex tissues and organs, such as blood vessels, myocardial "patches," kidneys, and even entire hearts. Additionally, it has the potential to eliminate the rejection responses associated with transplantation of "non-self" tissues, and thus the need for immunosuppressive drugs, which carry the risk of serious and potentially life-threatening complications and enormous cost to the United States health care system.

In the study, researchers obtained cow oocytes (donor eggs from cow ovaries) and removed and discarded the nuclei, which contain the cells’ genetic material, leaving behind just the shell. A skin cells from the cow’s ears was placed inside the egg shell and burst with electrical energy to expand the cells. That induces the one skin cell to become several cells. The resulting blastocysts (4-day old embryonic cell masses) were transferred into surrogate-mother cows for a 5- to 6-week incubation period.

Cow embryonic stem cells that can be induced to differentiate into specified tissues in vitro have not yet been isolated. Therefore, for the study it was necessary to generate an early stage cow embryo. Fortunately, the same is not true for humans, where stem cells have been successfully differentiated into different cells, including beating cardiac muscle cells, smooth muscle, and insulin-producing cells, among others. However, there is an ethical consensus in the United States not to allow preimplantation human embryos to develop beyond 80 to 100 cells, about the size of a pinhead. For humans, stem cells generated through nuclear transfer could be harvested and used as a source of genetically matched cells for transplantation.

Bioengineered tissues were created from heart, skeletal muscle and kidney cells cloned from adult cow skin cells. The cloned cells were harvested, expanded in culture and transferred to three-dimensional molds. The molds were placed in incubators to allow the cells to attach and form tissue. The cell-mold structures were implanted back into the cows from which the initial skin cells were harvested. Miniature kidneys, skeletal and heart muscle tissues were cloned. The miniature kidneys were able to excrete metabolic waste products through a urinelike fluid. There was no rejection response to the cloned tissues.

Currently, approximately 100,000 individuals in the US are awaiting an organ for transplantation and approximately 250,000 are on kidney dialysis. Atala and other regenerative medicine experts view nuclear transfer as one promising avenue to create tissues and organs that could be used for patients with various diseases.

The researchers of the paper from Children’s Hospital Boston and Harvard Medical School collaborated with scientists from Advanced Cell Technology, Worcester, Massachusetts; the Mayo Clinic, Rochester, Minnesota; and the University of Miami School of Medicine, Miami, Florida. The papers other authors are Ho Yun Chung, James Yoo, Gunter Schuch, and Shay Soker of Children’s Hospital; Robert P. Lanza, Michael D. West and Catherine Blackwell of ACT; Peter J. Wettstein, Nancy Borson, and Erik Hofmeister of the Mayo Clinic; and Carlos T. Moraes of the University of Miami School of Medicine.

Children’s Hospital Boston is the nation’s premier pediatric medical center. Children’s Hospital is the primary pediatric teaching affiliate of Harvard Medical School, home to the world’s leading pediatric research enterprise, and the largest provider of health care to the children of Massachusetts.

Elizabeth Andrews | EurekAlert
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>