Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children’s Hospital Boston researchers use therapeutic cloning to create functional tissue in cows

03.06.2002


Cloned cells organize into muscle, heart and kidney tissue; animals show no rejection



Boston - In a study published in the July issue of Nature Biotechnology, available on the internet June 3, researchers from Children’s Hospital Boston and colleagues demonstrated that laboratory-engineered tissues created from heart, skeletal, and renal cells cloned from cows, then transplanted back into the animals, developed into functional tissues and caused no signs of rejection.

"The study is proof of principle that therapeutic cloning can be used to create tissues without the threat of rejection," says Anthony Atala, M.D., director of Tissue Engineering at Children’s Hospital Boston and the senior author on the paper. "While more work needs to be done, this demonstrates the potential use of this technology."


As many as 3,000 Americans die every day from diseases that may someday be treatable with tissues created through stem cells, according to the Centers for Disease Control. Somatic cell nuclear transfer ("therapeutic cloning"), which is one way to derive stem cells, shows potential in generating functional replacement cells such as insulin-producing cells associated with diabetes. It also shows promise in reconstituting more complex tissues and organs, such as blood vessels, myocardial "patches," kidneys, and even entire hearts. Additionally, it has the potential to eliminate the rejection responses associated with transplantation of "non-self" tissues, and thus the need for immunosuppressive drugs, which carry the risk of serious and potentially life-threatening complications and enormous cost to the United States health care system.

In the study, researchers obtained cow oocytes (donor eggs from cow ovaries) and removed and discarded the nuclei, which contain the cells’ genetic material, leaving behind just the shell. A skin cells from the cow’s ears was placed inside the egg shell and burst with electrical energy to expand the cells. That induces the one skin cell to become several cells. The resulting blastocysts (4-day old embryonic cell masses) were transferred into surrogate-mother cows for a 5- to 6-week incubation period.

Cow embryonic stem cells that can be induced to differentiate into specified tissues in vitro have not yet been isolated. Therefore, for the study it was necessary to generate an early stage cow embryo. Fortunately, the same is not true for humans, where stem cells have been successfully differentiated into different cells, including beating cardiac muscle cells, smooth muscle, and insulin-producing cells, among others. However, there is an ethical consensus in the United States not to allow preimplantation human embryos to develop beyond 80 to 100 cells, about the size of a pinhead. For humans, stem cells generated through nuclear transfer could be harvested and used as a source of genetically matched cells for transplantation.

Bioengineered tissues were created from heart, skeletal muscle and kidney cells cloned from adult cow skin cells. The cloned cells were harvested, expanded in culture and transferred to three-dimensional molds. The molds were placed in incubators to allow the cells to attach and form tissue. The cell-mold structures were implanted back into the cows from which the initial skin cells were harvested. Miniature kidneys, skeletal and heart muscle tissues were cloned. The miniature kidneys were able to excrete metabolic waste products through a urinelike fluid. There was no rejection response to the cloned tissues.

Currently, approximately 100,000 individuals in the US are awaiting an organ for transplantation and approximately 250,000 are on kidney dialysis. Atala and other regenerative medicine experts view nuclear transfer as one promising avenue to create tissues and organs that could be used for patients with various diseases.


###
The researchers of the paper from Children’s Hospital Boston and Harvard Medical School collaborated with scientists from Advanced Cell Technology, Worcester, Massachusetts; the Mayo Clinic, Rochester, Minnesota; and the University of Miami School of Medicine, Miami, Florida. The papers other authors are Ho Yun Chung, James Yoo, Gunter Schuch, and Shay Soker of Children’s Hospital; Robert P. Lanza, Michael D. West and Catherine Blackwell of ACT; Peter J. Wettstein, Nancy Borson, and Erik Hofmeister of the Mayo Clinic; and Carlos T. Moraes of the University of Miami School of Medicine.

Children’s Hospital Boston is the nation’s premier pediatric medical center. Children’s Hospital is the primary pediatric teaching affiliate of Harvard Medical School, home to the world’s leading pediatric research enterprise, and the largest provider of health care to the children of Massachusetts.

Elizabeth Andrews | EurekAlert
Further information:
http://www.childrenshospital.org.

More articles from Health and Medicine:

nachricht New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome
28.07.2017 | University of California - San Diego

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>