Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Receptor provides a surprise

04.05.2015

Everything in life is based on the ability to perceive stimuli from the environment and to react to it. Receptors assume an important function. Now, while studying a specific class of receptors, scientists from the University of Würzburg have made an unexpected discovery.

A receptor sits in the cell wall and extends a kind of arm out. If a particular molecule or protein, such as a hormone or neurotransmitter, floats past, dissolved in the plasma, the receptor registers that with this arm and passes the information on to the cell interior. The cell can then react and, if necessary, initiate special steps. This is probably the mental image that many people, especially lay people, have when they think of a receptor.


Schematic representation of the effect of Latrophilin. The receptor modulates the perception of stimuli from the environment.

Scholz et al., Cell Reports (c) 2015 The Authors

Reaction to mechanical stimuli

But there is also another way: These receptors then respond to mechanical stimuli from the environment, such as vibrations, sound waves, or a stretch, and help organisms to hear, to perceive movements, and to control their own movements. Scientists from the University of Würzburg have now proven these abilities for a large class of receptors that had not been suspected of such properties previously. They report on their discovery online in the latest issue of the journal Cell Reports.

G-protein-coupled receptors, GPCRs for short, are the focus of the work performed by Dr. Tobias Langenhan and Dr. Robert Kittel. More specifically, their attention is directed at a special class of this receptor super-family, known as adhesion GPCRs. In a DFG research unit, for which Langenhan is the spokesperson, the two are examining the properties of these receptors together with scientists at the universities of Leipzig, Mainz, and Erlangen-Nuremberg, and the Amsterdam Medical Center of the University of Amsterdam. The research unit started work just under six months ago, and the first set of results are now available.

Key target for medication

“Hundreds of G-protein-coupled receptors are encoded in the human genome, and the way in which they work is now very well understood,” says Tobias Langenhan. One indication of their importance is the fact that around half of all clinically approved drugs target these receptors and, in doing so, treat ailments as varied as, for example, hypertension, asthma, and Parkinson’s disease. It is very different with adhesion GPCRs: although they are the second-largest class within the GPCR family, so far they are “poorly understood,” says Langenhan.

The research unit’s objective is to change that. And, the scientists have now been able to present an initial, surprising result to the public: “We were able to demonstrate that a special receptor from the group of adhesion GPCRs is involved in the perception of mechanosensory stimuli,” says Robert Kittel. Or, to put it another way, when organisms hear, perceive slight touch, or move, such GPCRs are also at play.

Behavioral changes in the fruit fly

In their study, the scientists focused on the larvae of the fruit fly Drosophila. “In these creatures we removed the very gene that encodes the receptor Latrophilin and replaced it with modified variants,” is how Langenhan explains the procedure. Next, the researchers observed the behavior of the larvae in as much detail as possible.

This revealed, for example, that larvae missing the receptor displayed a distinctive pattern of movement and covered shorter distances than the healthy control group. Instead of moving forwards in a purposeful manner, they just swung their heads over long phases. In a further experiment, the researchers took a more detailed look at special cells of the larval nervous system which are responsible for perceiving vibration stimuli. The finding there: larvae without Latrophilin receptors exhibited significantly weaker electrical responses than larvae that possess these receptors. A similar picture was found to do with hearing: Larvae without receptors required far louder signals for a flight reflex compared with healthy specimens.

A receptor as an amplifier

“Everything suggests, therefore, that these receptors register movements of the extracellular space in comparison with the cell and transmit this information to the cell interior,” is Robert Kittel’s summary of the results. Like a ship dropping anchor on the sea floor, adhesion GPCRs dock on surrounding structures and react if their “arm” is stretched or compressed.

What slightly complicates the work of the scientists here is the fact that in the case of receptors an “all-or-nothing principle” does not apply. “It is not the case that larvae missing Latrophilin are deaf and incapable of moving,” explains Tobias Langenhan. Instead, the receptors would intervene in the respective processes in a modulating manner, amplifying or cushioning them.

Good basis for further experiments

Robert Kittel and Tobias Langenhan believe that the results of this study represent a significant step on the road to classification of adhesion GPCRs. There are 33 varieties of them in the human body. There is much to suggest that there, too, they assume tasks similar to in fly larvae. For example, they can be found in hair cells in the inner ear. If they are missing or defective, the persons afflicted develop something known as “Usher syndrome,” a disease associated with early onset inner ear deafness or deafness from birth.

The new findings, in Langenhan’s words, are a good basis for now “developing further models and testing them in experiments.” After all, he says, there are still numerous unanswered questions in relation to receptors, such as how the signal is transported within the receptor and what “biochemical cascade” is triggered. Or why the receptor always breaks up into two parts during its creation, but appears reassembled at the cell membrane.

“We have now pulled the curtain to one side a little in an unexpected corner of physiology,” says Robert Kittel. For this reason both scientists are confident: “There is more to come!”

Personal profile

Since 2009, Robert Kittel has been running the Emmy Noether Group “Physiology and plasticity of the active zone in vivo” at the University of Würzburg’s Institute of Physiology.

Tobias Langenhan has been the group leader at the Department of Physiology (focus on neurophysiology) at the University of Würzburg since 2009 and head of the DFG research unit “Elucidation of Adhesion-GPCR Signaling” since October 2014.

Scholz et al., The Adhesion GPCR Latrophilin/CIRL Shapes Mechanosensation, Cell Reports (2015), http://dx.doi.org/10.1016/j.celrep.2015.04.008

Contact
Dr. Tobias Langenhan, MSc DPhil (Oxon), T: +49 (0)931 31-88681; tobias.langenhan@uni-wuerzburg.de

Dr. Robert J. Kittel, T: +49 (0)931 31-86046; Robert.Kittel@uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>