Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preserving photoreceptor cells following retinal injury

23.07.2015

Inhibition of alternate complement pathway highlighted in Science Translational Medicine

Vision researchers at Massachusetts Eye and Ear/Harvard Medical School (HMS) Department of Ophthalmology have taken a first step in solving a vexing problem: how to preserve photoreceptor cells and avoid irreversible vision loss in patients following retinal detachment.


Left, an image of a human retina from a healthy individual. Right, a retinal image from a patient with a retinal detachment. Note the balloon like structure of the retinal detachment.

(Image courtesy of Dr. Leo A. Kim, Massachusetts Eye and Ear Infirmary)

Degeneration of photoreceptors, the major light-sensing cells in the eye, is a primary cause of vision loss worldwide. Identifying the underlying causes surrounding photoreceptor cell death is paramount in order to develop new treatment strategies to prevent their loss. Retinal detachment and subsequent degeneration of the retina can lead to progressive visual decline due to photoreceptor cell death. Since photoreceptors are non-dividing cells, their loss results in irreversible visual impairment even after successful retinal reattachment surgery.

New research led by Kip M. Connor, Ph.D., a researcher and Assistant Professor of Ophthalmology at Mass. Eye and Ear/HMS Ophthalmology and colleagues analyzed innate immune system regulators in the eyes of human patients with retinal detachment and correlated their findings in an experimental model. They discovered that there was a significant increase in the immune system's 'alternative complement pathway' following retinal detachment and that this pathway facilitated early photoreceptor cell death after injury.

Injured photoreceptors lose important proteins that normally protect them from complement mediated cell death, allowing for selective targeting by the alternative complement pathway. Additionally, by blocking the alternative complement pathway, through both genetic and pharmacologic means, photoreceptors were protected from cell death.

"When photoreceptors in a detached retina were removed from their primary source of oxygen and nutrients, we found an increase in complement factor B?a key mediator of the alternative complement pathway that leads to photoreceptor cell death," says Dr. Connor. "For the first time these results provide evidence that the alternative complement pathway exacerbates photoreceptor cell death and that inhibition of the pathway is protective," said Kaylee Smith, a member of the Connor Lab and contributing author on the manuscript. Their findings were published today in the journal, Science Translational Medicine.

Retinal detachment can occur as a result of either blunt trauma or as a side effect of a variety of eye diseases, including diabetic retinopathy, ocular tumors, and age-related macular degeneration. The current standard of care is surgical reattachment, with patients in the United States and Europe typically treated within one week of the injury. Today's state-of-the-art surgical techniques are highly effective at physically reattaching the retina and?if surgery is timely?a positive, visual outcome often results. Even so, patients often complain of permanent vision loss accompanied by changes in color vision. "Studies in both humans and animal models have shown that photoreceptor cell death is induced as early as 12 hours after detachment, indicating that early intervention could potentially preserve photoreceptors and improve the visual function of patients who undergo reattachment surgery. Our research provides a new role for complement in retinal detachment, and suggests that inhibition of the alternative complement pathway may be good therapeutic target to prevent the initial photoreceptor cell loss," notes Dr. Connor.

"What makes this research so exciting is the potential impact it can have on our patients," he adds. "Working closely with our colleagues in the clinic, we identified a challenging issue, went back to our laboratories to uncover a cause, and now have knowledge that may help us to develop therapies that will help to preserve our patients' vision."

###

Funding notes:

Research reported in this [publication/press release] was supported by National Eye Institute of the National Institutes of Health under award numbers: R01EY022084/S1. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Generous awards from Research to Prevent Blindness (RPB): RPB Special Research Scholar Award to Kip M. Connor, RPB Physician-Scientist Award to Demetrios Vavvas and an Unrestricted Grant to the Department of Ophthalmology, Harvard Medical School, Joan W. Miller, Chair.

About Massachusetts Eye and Ear

Mass. Eye and Ear clinicians and scientists are driven by a mission to find cures for blindness, deafness and diseases of the head and neck. After uniting with Schepens Eye Research Institute Mass. Eye and Ear in Boston became the world's largest vision and hearing research center, offering hope and healing to patients everywhere through discovery and innovation. Mass. Eye and Ear is a Harvard Medical School teaching hospital and trains future medical leaders in ophthalmology and otolaryngology, through residency as well as clinical and research fellowships. Internationally acclaimed since its founding in 1824, Mass. Eye and Ear employs full-time, board-certified physicians who offer high-quality and affordable specialty care that ranges from the routine to the very complex. U.S. News & World Report's "Best Hospitals Survey" has consistently ranked the Mass. Eye and Ear Departments of Otolaryngology and Ophthalmology as top five in the nation.

About Harvard Medical School Department of Ophthalmology

The Harvard Medical School (HMS) Department of Ophthalmology is one of the leading and largest academic departments of ophthalmology in the nation. More than 350 full-time faculty and trainees work at nine HMS affiliate institutions, including Massachusetts Eye and Ear/Schepens Eye Research Institute, Massachusetts General Hospital, Brigham and Women's Hospital, Boston Children's Hospital, Beth Israel Deaconess Medical Center, Joslin Diabetes Center/Beetham Eye Institute, Veterans Affairs Boston Healthcare System, VA Maine Healthcare System, and Cambridge Health Alliance. Formally established in 1871, the department has been built upon a strong and rich foundation in medical education, research, and clinical care. Through the years, faculty and alumni have profoundly influenced ophthalmic science, medicine, and literature--helping to transform the field of ophthalmology from a branch of surgery into an independent medical specialty at the forefront of science.

CONTACT: Joseph O'Shea
joseph_oshea@meei.harvard.edu
617-573-3341

http://www.meei.harvard.edu 

Joseph O'Shea | EurekAlert!

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>