Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precisely Off The Mark: Possible Cause Discovered For Failure of Targeted Liver Cancer Therapies

24.11.2014

Targeted therapy against liver cancer: Cause of failure discovered

The failure of experimental liver cancer therapies directed specifically against the EGFR protein is presumably the result of insufficiently specific patient selection. This is the conclusion that can be drawn from data that were obtained within the framework of a project carried out by an Austrian Science Fund FWF doctoral programme, and that have now been published in NATURE Cell Biology.


Targeted therapies against liver cancer require a detailed picture of the liver. A FWF doctoral programme offers new insights.

© Nicole Amberg & Karin Komposch

The data prove that the tumour-promoting effect of EGFR originates, not directly from its expression in the tumour cells, but rather from its presence in the surrounding cells (macrophages) of the immune system. This predicts that experimental anti-EGFR therapeutic agents will prove effective only in patients who exhibit EGFR in the immune cells. This expanded understanding of the occurrence of EGFR in macrophages now offers, however, potential new approaches for the treatment of liver cancer.

Liver cancer is one of the most common malignant tumours. As treatment options are limited, the prognosis is very poor. Hopes were therefore high when, a few years ago, it was shown that a special protein – the epidermal growth factor receptor (EGFR) – accumulates in up to 70 percent of all liver tumours and promotes tumour development. It was believed that a target had been found for targeted therapies. However, the use of therapeutic agents to inhibit EGFR proved unsuccessful and the expected effect remained largely absent. Too little was known about the function of EGFR in liver cancer development. This is precisely what a research project at the Medical University of Vienna has now clarified.

SURPRISING FINDING

At the core of the work carried out at the Institute of Cancer Research were mouse models in which the presence of EGFR was suppressed in various different cell types of the liver. This made it possible to also grow liver tumours whose tumour cells were completely lacking EGFR. According to the previous knowledge, this would have been expected to result in decreased tumour growth. However, during the analysis a surprise emerged, as Prof. Maria Sibilia, coordinator of the FWF doctoral programme "Inflammation and Immunity", explains: "We found just the opposite – tumour growth increased. This was not the case for tumours in which EGFR was lacking only in the surrounding macrophages. There, tumour growth was considerably decreased." In fact, until now, it wasn't known that EGFR is even expressed in these immune cells. These liver macrophages, or Kupffer cells, become active particularly when inflammations and infections occur as a means to protect the body – the fact that EGFR has a tumour-promoting effect in these cells was not known.

To gain a better understanding of how the activity of EGFR on the Kupffer cells influences tumour growth, the team headed by Prof. Sibilia further analysed its functional mechanism. The group thereby succeeded in decoding a complex chain of cellular signalling pathways that actually leads to increased growth of liver cells. According to project team member Karin Komposch, "We were able to show that injuries to hepatocytes trigger the release of the messenger substance, interleukin-1beta. This, via diverse intermediate stages, causes EGFR in Kupffer cells to stimulate the production of interleukin-6 (IL-6), which causes liver cells to proliferate. In principle, the release of IL-6 should stimulate the proliferation of hepatocytes thus aiding in the repair of damaged tissue – but can also lead to uncontrolled hepatocyte proliferation, and thus to tumour formation."

TREATMENT & DIAGNOSIS

In the team's view, this fresh understanding now offers a new opportunity to use EGFR inhibitors in the treatment of liver cancer. These inhibitors would actually have to be used only in patients with EGFR expression in the Kupffer cells, and not in patients with EGFR expression exclusively in the tumour cells/hepatocytes. If these inhibitors were to act only in Kupffer cells, maximum reduction of tumour growth could be achieved. However, Ms. Komposch believes this work also offers another key finding for cancer diagnosis: "The presence of EGFR in the Kupffer cells could provide crucial information on the future course of tumour development, making it an important prognostic marker."

On the whole, the FWF doctoral programme findings thus provide both fundamental insight into complex cellular signalling pathways and concrete starting points for new developments in treatment and diagnosis.


Original publication: EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. H. Lanaya, A. Natarajan, K. Komposch, L. Li, N. Amberg, L. Chen, S. K.Wculek, M. Hammer, R. Zenz, M. Peck-Radosavljevic, W. Sieghart, M. Trauner, H. Wang und M. Sibilia. Nature Cell Biology 16, 972–981 (2014) doi:10.1038/ncb3031

Image and text available from Monday, 24 November 2014, from 10:00 a.m. CET, at:
http://www.fwf.ac.at/en/research-in-practice/project-presentations/2014/pv201411/


Scientific Contact:
Prof. Maria Sibilia
Medical University of Vienna
Institute of Cancer Research
Borschkegasse 8a
1090 Vienna, Austria
T +43 / 1 / 40160 - 57502
E sibilia-office@meduniwien.ac.at

Austrian Science Fund FWF:
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E marc.seumenicht@fwf.ac.at
W http://www.fwf.ac.at

Copy Editing & Distribution:
PR&D – Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Dr. Katharina Schnell | PR&D - Public Relations für Forschung & Bildung

Further reports about: EGFR Kupffer cells immune liver liver cancer macrophages tumour tumour cells tumour growth tumours

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>