Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful new technique can clone thousands of genes at once

06.07.2017

Scientists at Johns Hopkins, Rutgers, the University of Trento in Italy, and Harvard Medical School report they have developed a new molecular technique called LASSO cloning, which can be used to isolate thousands of long DNA sequences at the same time, more than ever before possible. The new technology, they say, speeds up the creation of proteins, the final products of genes, and is likely to lead to far more rapid discovery of new medicines and biomarkers for scores of diseases.

In a report on the technique's development, published June 26 in Nature Biomedical Engineering, the researchers describe their novel molecular approach to simultaneously clone and express thousands of protein-coding DNA sequences in a single reaction. Historically, figuring out what a gene does by cloning its DNA and expressing its protein was done one gene at a time.


New DNA-based LASSO molecule probe can bind target genome regions for functional cloning and analysis.

Credit: Jennifer E. Fairman/Johns Hopkins University

"Our goal is to make it cheap and easy for any researcher in any field to clone and express the entire set of proteins from any organism," says Ben Larman, Ph.D., an assistant professor of pathology at the Johns Hopkins University School of Medicine and the study's co-senior author. "Until now, such a prospect was only realistic for high-powered research consortia studying model organisms like fruit flies or mice."

The new paper describes a new type of captured DNA strand, a tool the authors refer to as a LASSO probe, for long adapter single-stranded oligonucleotide. Collections of these LASSO probes can be used to grab desired DNA sequences --much like a rope lasso is used to capture cattle -- but in this case thousands at a time in a single effort.

Each target gene sequence can be up to a few thousand DNA base pairs long, which is the typical size of a gene's protein-coding sequence. The new technique is an improvement on an older method called molecular inversion probes (MIPs), which is able to capture only about 200 bases of DNA, Larman says.

In a proof-of-concept study, LASSO probes were used to simultaneously capture more than 3,000 DNA fragments from the E. coli bacterial genome. The team successfully captured at least 75 percent of the gene targets. Importantly, the researchers say, these sequences are captured in a way that permits scientists to analyze what the genes' proteins do, as demonstrated by conferring antibiotic resistance to an otherwise susceptible cell.

"We're very excited about all the potential applications for LASSO cloning," says Larman. "Our hope is that by greatly expanding the number of proteins that can be expressed and screened in parallel, the road to interesting biology and new therapeutic biomolecules will be dramatically shortened for many researchers."

###

Other authors include Lorenzo Tosi, Viswanadham Sridhara, Yunlong Yang, Dongli Guan and Polina Shpilker of Harvard Medical School; Nicola Segata of the University of Trento in Trento, Italy; and Biju Parekkadan of Rutgers University.

This work was supported by the Shriners Hospitals for Children, the Prostate Cancer Foundation and the National Institutes of Health (R01EB012521, K01DK087770 and 1U24AI118633).

Larman, co-senior author Biju Parekkadan and first author Lorenzo Tosi are listed as inventors on a patent application related to LASSO cloning, which is currently pending approval.

Media Contact

Chanapa Tantibanchachai
chanapa@jhmi.edu
410-502-9433

 @HopkinsMedicine

http://www.hopkinsmedicine.org 

Chanapa Tantibanchachai | EurekAlert!

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>