Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potentially targetable signaling pathway generates slowly proliferating, chemo-resistant cancer cells

12.01.2015

A signaling pathway responsible for the generation of slowly proliferating cancer cells, which are hard to eradicate with current treatments and thought to be a cause of subsequent disease relapse, has been reported in a Rapid Impact study published in Molecular Cancer Research, a journal of the American Association for Cancer Research.

"We have identified a new pathway in which well-studied signaling molecules string together to regulate cell proliferation," said Sridhar Ramaswamy, MD, an associate professor of medicine at Massachusetts General Hospital Cancer Center and Harvard Medical School in Boston. "Since a number of these molecules are under intensive study as therapeutic targets for various cancer types, we are currently designing strategies to target this pathway in animal models in order to better clarify the potential clinical implications of these findings.

"All cancers contain some cells that are rapidly proliferating and many that proliferate only very slowly," explained Ramaswamy, who is also an associate member of the Broad Institute and the Harvard Stem Cell Institute. "Most cancer treatments target rapidly dividing cancer cells but leave the slowly dividing ones unharmed and still capable of causing disease recurrence after the initial treatment. Our goal has been to understand how these slow proliferators are produced in order to devise ways to eliminate them."

When cancer cells growing in the laboratory divide, they usually produce two daughter cells that have the same rate of proliferation, but sometimes one daughter cell proliferates at a much slower pace than the other.

Ramaswamy and colleagues have been investigating why cancer cells undergo this type of asymmetric cell division for a number of years. In a previously published study, they found that if a cancer cell asymmetrically suppresses expression of a protein called AKT right before dividing, it produces two daughter cells: one that has normal levels of AKT protein and proliferates rapidly like the parent cell, and one that has low levels of AKT and proliferates slowly.

They also detected these rare cancer cells with low levels of AKT in breast cancer patients and found that these cells were highly resistant to the combination chemotherapy being used to treat the patients.

In this new study, the researchers used a number of molecular biology techniques to investigate how cancer cells dividing in the laboratory produce daughter cells with different levels of AKT. They found that decreased signaling through beta1-integrin, a molecule found on the surface of most cancer cells, decreased the activity of the signaling molecule FAK. This, in turn, increased the activity of a complex of signaling molecules called mTORC2, which led to suppression of AKT1 protein levels by a molecule called TTC3 and the proteasome complex.

"Prior to these studies, we thought that asymmetric suppression of AKT might just relate to random fluctuations in protein levels during cell division," said Ramaswamy. "We discovered that this is not the case; it is actually regulated by a potentially targetable signaling pathway, which may offer new avenues for reducing the proliferative heterogeneity within tumors for therapeutic effect."

The study was supported by funds from Stand Up To Cancer, the National Cancer Institute, the Howard Hughes Medical Institute, Susan G. Komen, the Prostate Cancer Foundation, CNPq (the National Council for Scientific and Technological Development in Brazil), and Instituto de Salud Carlos III in Spain. Ramaswamy declares no conflicts of interest.

Follow us: Cancer Research Catalyst http://blog.aacr.org; Twitter @AACR; and Facebook http://www.facebook.com/aacr.org

For AACR information, visit Fast Facts

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's oldest and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 33,000 laboratory, translational, and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in 101 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis, and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with over 18,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients, and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the Scientific Partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration, and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.

Jeremy Moore | EurekAlert!

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>