Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible Strategy Identified to Combat Major Parasitic Tropical Disease

20.02.2015

St. Jude Children’s Research Hospital scientists report results that suggest neutralizing a single protein may aid fight against a parasitic tropical disease that annually sickens more than 1.3 million people worldwide

Research led by St. Jude Children’s Research Hospital scientists has identified a potential target in the quest to develop a more effective treatment for leishmaniasis, a parasitic tropical disease that kills thousands and sickens more than 1 million people worldwide each year. The findings were published online in the Journal of Clinical Investigation.


Peter Barta, St. Jude Children's Research Hospital

Research led by St. Jude Children’s Research Hospital scientists has identified a potential target in the quest to develop a more effective treatment for leishmaniasis, a parasitic tropical disease. Pictured are the study’s corresponding author, Thirumala-Devi Kanneganti, PhD, member in the St. Jude Immunology Department, and first author Prajwal Gurung, PhD, a postdoctoral fellow in Kanneganti’s laboratory.

Researchers showed that blocking the activity of the chemical messenger or cytokine called interleukin 18 (IL-18) protected specially bred mice from the most common form of leishmaniasis. IL-18 is produced by cells in the innate immune system, which serves as the first line of defense against infectious agents and other threats. Multi-protein complexes known as NLRP3 inflammasomes sense Leishmania and help to make IL-18.

The finding was a surprise because in previous research with a different mouse model, NLRP3 inflammasome was reported to drive the immune response that protects against leishmaniasis.

“We have uncovered a novel role for IL-18 in certain settings that has potential for being translated into more effective therapy for an infection that takes a high toll on residents, particularly children, of some of the world’s poorest countries,” said corresponding author Thirumala-Devi Kanneganti, Ph.D., a member of the St. Jude Department of Immunology.

Leishmaniasis is caused by a family of parasites transmitted through the bite of infected sandflies. The World Health Organization estimates that 1.3 million individuals worldwide, mostly in the developing world, are infected annually and 20,000 to 30,000 die. In countries where the disease is endemic, children are at greater risk of infection than adults. Prevention and treatment efforts have lagged. Leishmaniasis is classified as a neglected tropical disease by the U.S. Centers for Disease Control and Prevention.

The findings also provide insight into the immune response to parasitic infections, particularly how the innate immune response influences the adaptive immune response and thus the odds of eliminating the infection. Along with providing initial defense against an infection, the innate immune system shapes the more targeted defense mounted by the adaptive immune system.

This study focused on the Leishmania major (L. major) parasite, which is one of more than 20 different species of Leishmania and the most common cause of the disease in humans. L. major causes skin sores that sometimes take years to heal and result in scarring and disability.

In mice that are susceptible to the parasite, researchers reported that the infection led to increased production of IL-18 by white blood cells, which are part of the innate immune response.

Based on previous studies with a different mouse model of leishmaniasis, researchers expected IL-18 to promote an adaptive immune response led by a family of white blood cells called type 1 helper T (Th1) cells. Th1 cells make the cytokine interferon gamma that is associated with resistance to leishmaniasis.

But rather than prompting the adaptive immune system to launch a response likely to eliminate the infection, IL-18 did the opposite. IL-18 favored production of specialized immune cells that make the cytokine interleukin 4 (IL-4). IL-4 skewed the adaptive immune response in the parasite’s favor. IL-4 is produced by type 2 helper T cells.

IL-18 production is controlled by a large, multi-protein complex known as the NLRP3 inflammasome. When researchers eliminated any of the three main components of the NLRP3 inflammasome, IL-18 production declined and the mice were resistant to the infection.

“While the NLRP3 inflammasome is considered an essential component of the defense against bacterial and viral infections, little was known about its role during parasitic infections,” said first author Prajwal Gurung, Ph.D., a postdoctoral fellow in Kanneganti’s laboratory. “Our results suggest that the NLRP3 inflammasome controls susceptibility to the most common Leishmania infection by regulating the balance between the Th1 and Th2 adaptive immune response.”

Researchers also demonstrated that neutralizing IL-18 protected susceptible mice from infection, suggesting that the same approach might protect humans.

The study’s other authors are Rajendra Karki, Peter Vogel and Mark Bix, all of St. Jude; Makiko Watanabe of the University of Florida, Gainesville; and Mohamed Lamkanfi of Ghent University, Ghent, Belgium.

The study was funded in part by grants (AR056296, CA163507, AI101935) from the National Institutes of Health; the European Research Council, the Fund for Scientific Research-Flanders and ALSAC.

St. Jude Media Relations Contacts
Carrie Strehlau
desk (901) 595-2295
cell (901) 297-9875
carrie.strehlau@stjude.org

Summer Freeman
desk (901) 595-3061
cell (901) 297-9861
summer.freeman@stjude.org

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is leading the way the world understands, treats and defeats childhood cancer and other life-threatening diseases. It is the only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. Treatments developed at St. Jude have helped push the overall childhood cancer survival rate from 20 percent to 80 percent since the hospital opened more than 50 years ago. St. Jude is working to increase the overall survival rate for childhood cancer to 90 percent in the next decade. St. Jude freely shares the breakthroughs it makes, and every child saved at St. Jude means doctors and scientists worldwide can use that knowledge to save thousands more children. Families never receive a bill from St. Jude for treatment, travel, housing and food—because all a family should worry about is helping their child live. To learn more, visit stjude.org or follow St. Jude at @stjuderesearch.

Carrie Strehlau | newswise
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>