Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Platelets suppress T cell immunity against cancer

08.05.2017

Platelets promote immune tolerance to certain cancers by suppressing T cells and adoptive T cell therapy may be enhanced by adding antiplatelet drugs, report researchers at the Medical University of South Carolina in Science Immunology

Blood platelets help disguise cancer from the immune system by suppressing T cells, report scientists at the Medical University of South Carolina (MUSC) in the May 5, 2017 issue of Science Immunology. In extensive preclinical tests, a promising T cell therapy more successfully boosted immunity against melanoma when common antiplatelet drugs such as aspirin were added.


This is a stylized illustration of a platelet and T cell. Plus and negative signs are used to symbolically indicate the positive (clotting) and negative (downregulating T cell immunity) effects of platelets.

Illustration by Emma Vought of the Medical University of South Carolina

Zihai Li, M.D., Ph.D., senior author on the article, is chair of the MUSC Department of Microbiology and Immunology, the program leader for the Cancer Immunology Research Program at MUSC Hollings Cancer Center, and the SmartState® Sally Abney Rose Chair in Stem Cell Biology & Therapy. Li studies how tumors hide themselves from the immune system.

Li's team found that platelets release a molecule that suppresses the activity of cancer-fighting T cells. That molecule, unsurprisingly, was TGF-beta, which has been recognized for decades for its role in cancer growth.

Yet this study is the first of its kind. Most TGF-beta is inactive. Li and his group found that the surface of platelets has a protein called GARP, a molecular hook that is uniquely able to trap and activate TGF-beta. Platelets, which are small cell fragments that circulate throughout the blood and are normally involved in clotting, become the major source of activated TGF-beta that invading tumor cells use to suppress T cells. In other words, platelets help give tumors their invisibility cloak from the immune system.

Scientists have known for several years that certain cancers suppress T cells to avoid the immune system. That is why adoptive T cell therapy is one of the most promising advances in modern cancer treatment. It is a type of immunotherapy that awakens the immune system by retraining a patient's T cells to recognize their cancer. T cells are isolated from a patient's blood and retrained, or "primed," to recognize tumor cells. They are then injected back into the patient's bloodstream where they can now hunt and fight cancer.

There was some evidence that platelets might make cancer worse. For example, patients who have excessive clotting related to their cancer almost always have a worse prognosis, according to Li.

"Over the years, it has become appreciated that platelets are doing more than just clotting," says Li.

The first clue that cancer-fighting T cells might be suppressed by the body's own clotting system came when the researchers gave melanoma to mice with genetically defective platelets. Melanoma tumors grew much more slowly and primed T cells were much more active than in mice with normal platelets.

Next, the team isolated platelets and T cells from blood drawn from humans and mice. In both cases, platelets with activated clotting activity suppressed T cell response. It then used mass spectrometry to thoroughly identify the molecules released by activated platelets that most suppressed T cell activity. The molecule with the most T cell suppression was TGF-beta.

Li and his team then studied how platelets activate TGF-beta. In genetically modified mice without GARP, the molecular hook on the surface of platelets, adoptive T cell therapy was more successful at controlling melanoma. This meant that platelets without the ability to grab and activate TGF-beta were not able to suppress cancer-fighting T cells. Similar experiments confirmed this result in mice with colon carcinoma.

Finally, mice with normal platelets that were given melanoma and then adoptive T cell therapy survived longer and relapsed less when aspirin and clopidogrel, two antiplatelet drugs, were added. The researchers noted that antiplatelet drugs by themselves were not successful in combating melanoma in their experiments.

This study could inform future treatment of melanoma and other cancers and offers a sound reason to test antiplatelet drugs in clinical trials of adoptive T cell therapy. In patients with melanoma or other cancers, adoptive T cell therapy may be successful if highly available platelet-blocking drugs such as aspirin are added to the treatment. However, the current standard of care for melanoma is not adoptive T cell therapy, but so-called checkpoint inhibitors.

Li and his group want to know if combination therapy with antiplatelet drugs could improve existing cancer treatment. They are waiting for approval to begin a clinical trial that will test certain checkpoint inhibitors in combination with aspirin and clopidogrel for the treatment of patients with advanced cancers. Li's trial will complement clinical trials that are already testing adoptive T cell therapy as a single treatment for cancer.

"I'm very excited about this," says Li. "We can test simple, over-the-counter antiplatelet agents to really improve immunity and make a difference in how to treat people with cancer."

###

About MUSC

Founded in 1824 in Charleston, The Medical University of South Carolina is the oldest medical school in the South. Today, MUSC continues the tradition of excellence in education, research, and patient care. MUSC educates and trains more than 3,000 students and residents in six colleges (Dental Medicine, Graduate Studies, Health Professions, Medicine, Nursing, and Pharmacy), and has nearly 13,000 employees, including approximately 1,500 faculty members. As the largest non-federal employer in Charleston, the university and its affiliates have collective annual budgets in excess of $2.2 billion, with an annual economic impact of more than $3.8 billion and annual research funding in excess of $250 million. MUSC operates a 700-bed medical center, which includes a nationally recognized children's hospital, the Ashley River Tower (cardiovascular, digestive disease, and surgical oncology), Hollings Cancer Center (a National Cancer Institute-designated center), Level I Trauma Center, Institute of Psychiatry, and the state's only transplant center. In 2016, U.S. News & World Report named MUSC Health the number one hospital in South Carolina. For more information on academic programs or clinical services, visit musc.edu. For more information on hospital patient services, visit muschealth.org.

Media Contact

Heather Woolwine
woolwinh@musc.edu
843-792-7669

 @MUSChealthPN

http://www.musc.edu 

Heather Woolwine | EurekAlert!

Further reports about: Immunology Melanoma T cell immunity T cells cancer-fighting immune system tumors

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>