Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study solves mystery of cell powerhouse's balance of calcium

26.01.2016

Two gatekeepers for 1 gate: Research has implications for diabetes, stroke, cancer, and age-related neurological diseases

A decades-long mystery of how the cell's powerhouse, and its energy currency of calcium ion flow, is maintained under different physiological conditions has been solved by researchers from the Perelman School of Medicine at the University of Pennsylvania.


The mitochondrial matric calcium ion concentration regulates activity of the major mitochondrial calcium influx pathway, as measured by patch clamp physiology.

Credit: The lab of Kevin Foskett, PhD, Perelman School of Medicine, University of Pennsylvania

The team, led by Kevin Foskett, PhD, chair of the department of Physiology, identified a novel regulatory mechanism that governs levels of calcium inside cells. Without this physiological mechanism, calcium levels can increase uncontrollably, contributing to a variety of neurodegenerative, metabolic, and cardiovascular diseases.

The findings, reported early online this month in Cell Reports, add important new insights into the gatekeeping mechanism of calcium entry into the cell power unit, called the mitochondria, and may help scientists better understand and target newly identified molecular components that regulate calcium flux.

"Understanding the molecular mechanisms by which mitochondrial calcium levels are regulated may have important implications for designing therapeutic targets for a variety of diseases, including diabetes, stroke, cancer, and age-related neurological diseases that have been related to mitochondrial dysfunction," Foskett said. Mitochondria are comprised of two membranes. The outer membrane covers this cell component like a skin, and the inner membrane folds over many times, creating layers to increase surface area for the chemical reactions that produce the body's energy molecules. Disorders of mitochondria can disrupt energy production, essentially like an electrical brown out or black out.

Calcium is an important chemical messenger that regulates a variety of cellular processes. When calcium levels rise in the cell's interior during cell signaling, mitochondria rapidly take it in through a protein complex called the mitochondrial calcium uniporter (MCU). The MCU is an ion channel that governs uptake of calcium ions. Maintaining correct levels of calcium in and outside of the mitochondria is important because it is required for cellular energy production but an overload can lead to cell death.

Horia Vais, PhD, a senior research investigator in the Foskett lab measured calcium ion currents flowing through the MCU. He discovered that the concentration of calcium inside the mitochondria matrix strongly regulates the activity of MCU. The matrix contains enzymes, strands of DNA, protein crystals, glycogen, and lipid and occupies the inner space inside the mitochondria.

This mechanism ensures that MCU activity is low, preventing calcium overload inside the mitochondria. This gatekeeping brake can be overcome by higher matrix calcium concentrations during cell signaling. In 2012, the Foskett group and Temple University collaborators established in a seminal study published in Cell that the mitochondrial protein MICU1 is required to set the proper level of calcium uptake under normal conditions. However, the current study showed that MICU1 is not localized in the matrix, but in the inter-membrane space.

The authors established that one end of an MCU-associated membrane, called EMRE, resided in the mitochondrial matrix and contained acidic amino acids resembling calcium-sensing regions of other ion channels. Neutralizing these regions completely abolished calcium regulation, and the mitochondria became overloaded with calcium.

From this, the team found that EMRE-dependent matrix calcium regulation of MCU required MICU1, MICU2, and calcium on the other side of the inner membrane to work properly. EMRE couples calcium sensors on both sides of the inner membrane to regulate MCU activity and the extent of mitochondrial calcium flux. "We now know that this important ion channel gateway deep inside the cell is regulated by two gatekeepers, governed by EMRE," Foskett said.

"Our study unravels the mystery of the mitochondrial gatekeeping mechanism," said co-first author Karthik Mallilankaraman, PhD, a postdoctoral fellow in the Foskett lab who is now an assistant professor of Physiology at the National University of Singapore. "We have shown that mitochondria are protected from calcium overload by components on either side of the mitochondrial inner membrane -- MICU proteins on one side and matrix calcium on the other -- coupled by EMRE."

###

Other authors, all from the Foskett lab, are Daniel Mak, Henry Hoff, Riley Payne, and Jessica Tanis. This work was supported by the National Institute of General Medical Sciences (GM56328).

Karen Kreeger | EurekAlert!

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>