Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parsley and other plants lend form to human stem cell scaffolds

21.03.2017

Borrowing from nature is an age-old theme in science. Form and function go hand-in-hand in the natural world and the structures created by plants and animals are only rarely improved on by humans.

Taking that lesson to heart, scientists at the University of Wisconsin-Madison are using the decellularized husks of plants such as parsley, vanilla and orchids to form three-dimensional scaffolds that can then be primed and seeded with human stem cells to optimize their growth in the lab dish and, ultimately, create novel biomedical implants.


Human fibroblast cells, common connective tissue cells, growing on decellularized parsley. A team of UW-Madison researchers from the lab of bioengineering Professor William Murphy is exploring the use of plants to make the three-dimensional structures that may one day be used to repair bone and tissue.

Credit: Gianluca Fontana/UW-Madison

Writing March 20 in the journal Advanced Healthcare Materials, a team led by William Murphy, a professor of biomedical engineering and co-director of the UW-Madison Stem Cell and Regenerative Medicine Center, describes the use of a variety of plants to create an efficient, inexpensive and scalable technology for making tiny structures that could one day be used to repair muscle, organs and bone using stem cells.

"Nature provides us with a tremendous reservoir of structures in plants," explains Gianluca Fontana, the lead author of the new study and a UW-Madison postdoctoral fellow. "You can pick the structure you want."

The new technology capitalizes on the elegant, efficient structural qualities of plants: strength, rigidity, porosity, low mass and, importantly, surface area. It may help overcome the limitations of current methods such as 3-D printing and injection molding to create feedstock structures for biomedical applications.

"Plants are really special materials as they have a very high surface area to volume ratio, and their pore structure is uniquely well-designed for fluid transport," says Murphy.

The UW-Madison team collaborated with Madison's Olbrich Botanical Gardens and curator John Wirth to identify plant species that could potentially be transformed into the miniature structures useful for biomedical applications. In addition to plants like parsley and orchid, Wirth and colleagues at Olbrich identified bamboo, elephant ear plants and wasabi as plants whose structural qualities may be amenable to creating scaffolds with properties and shapes useful in bioengineering. The team also collected plants such as the wetland-loving bulrush from the UW Arboretum.

"The vast diversity in the plant kingdom provides virtually any size and shape of interest," notes Murphy, who was prompted to explore the plant world after gazing from his office window onto UW-Madison's Lakeshore Nature Preserve. "It really seemed obvious. Plants are extraordinarily good at cultivating new tissues and organs, and there are thousands of different plant species readily available. They represent a tremendous feedstock of new materials for tissue engineering applications."

The new approach to making scaffolds for tissue engineering depends on cellulose, the primary constituent of the cell walls of green plants. The Wisconsin team found that stripping away all of the other cells that make up the plant, and treating the leftover husks of cellulose with chemicals, entices human stem cells such as fibroblasts -- common connective tissue cells generated from stem cells -- to attach to and grow on the miniature structures.

Stem cells seeded into the scaffolds, according to Fontana, tend to align themselves along the pattern of the scaffold's structure. "Stem cells are sensitive to topography. It influences how cells grow and how well they grow."

That ability to align cells according to the structure of the plant scaffold, adds Murphy, suggests it might be possible to use the materials to control structure and alignment of developing human tissues, a feature critical for nerve and muscle tissues, which require alignment and patterning for their function.

Another critical advantage of the plant scaffolds, notes Murphy, is the apparent ease with which they can be made and manipulated. "They are quite pliable. They can be easily cut, fashioned, rolled or stacked to form a range of different sizes and shapes."

They are also renewable, easy to mass produce and inexpensive.

The scaffolds have yet to be tested in an animal model, but plans are underway to conduct such studies in the near future.

"Toxicity is unlikely, but there is potential for immune responses if these plant scaffolds are implanted into a mammal," says Murphy. "Significant immune responses are less likely in our approach because the plant cells are removed from the scaffolds."

###

The Wisconsin study was supported by grants from the Environmental Protection Agency, the National Institutes of Health and the National Science Foundation.

Terry Devitt, (608) 262-8282, trdevitt@wisc.edu

DOWNLOAD PHOTOS: https://uwmadison.box.com/v/stem-cell-scaffold

Media Contact

William Murphy
wlmurphy@ortho.wisc.edu
608-265-9978

 @UWMadScience

http://www.wisc.edu 

William Murphy | EurekAlert!

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>