Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pandemic toolkit offers flu with a view

16.12.2009
Health officials evaluate modeling tool to simulate various pandemic strategies

As communities brace for rising wintertime influenza cases, scientists are developing a mathematical and visual analytic toolkit to help health officials quickly analyze pandemics and craft better response strategies.

Scientists at the Department of Energy's Pacific Northwest National Laboratory have created a Pandemic Influenza Planning Tool to model the spread of a disease through various age groups and geographic populations. It also allows decision-makers to carefully assess the benefit of their decisions for different scenarios in advance.

"No single approach provides an optimal strategy when battling the spread of a pandemic," said Robert Brigantic, PNNL operations research scientist, "But, the use of this tool can allow health officials to more accurately predict how a disease might evolve when various mitigation strategies are applied."

These results could be valuable in developing an aggressive preventive strategy and deciding how best to use limited resources.

Brigantic's tool allows officials to easily evaluate potential response options by manipulating modeling parameters and running different simulations. For instance, officials could assess closing schools to decrease disease spread, initiate preventative media campaigns, or evaluate distributing antiviral medications to easily evaluate potential mitigation approaches.

In late September, PNNL demonstrated an early prototype of the tool during a Walla Walla County, Wash., Pandemic Influenza emergency exercise. Officials simulated an H1N1 Swine Flu outbreak and used the tool to predict resource needs and shortfalls, such as the loss of critical staff and lack of hospital beds.

"The tool illustrated how essential services can fail when critical employees became ill," said Gay Ernst, director of emergency management in Walla Walla County. "Visualizing possible disease progression enables us to consider how many critical personnel may be unavailable at one time and plan accordingly."

To help users also understand and visualize the effects of potential scenarios, PNNL teamed with Purdue University to add a visual analytic element to the toolkit called PanViz. It allows decision makers to visually track a simulation of spreading influenza on a video monitor. Users can toggle on and off various decision measures and visually see and examine the impact of those modifications and how they may alter the spread of the outbreak over time across counties in a state.

PNNL has demonstrated the planning tool during its development to Washington State Public Health as well as emergency officials in Los Angeles County and in Indiana. Researchers are improving the system's infectious disease modeling capabilities by making underlying algorithms more sophisticated and precise. Including more mitigation strategies and incorporating input from public health and emergency management experts is a priority as developers enhance the model.

This work was originally developed under a $50,000 subcontract with Purdue University to create the Pandemic Influenza Planning Tool for use by Indiana state as part of its pandemic influenza planning exercises. If additional funding is secured, Brigantic hopes to expand the model capabilities to see how additional social-distancing actions, such as telecommuting, cancelling social events and imposing quarantines might influence the virtual spread of a pandemic. He also envisions incorporating additional social modeling and behavioral responses.

Brigantic and his team are also conducting related modeling and simulation analysis for the Centers for Disease Control and Prevention to establish effective and efficient screening of passengers arriving on international flights for pandemic influenza.

Geoff Harvey | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>