Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pandemic toolkit offers flu with a view

Health officials evaluate modeling tool to simulate various pandemic strategies

As communities brace for rising wintertime influenza cases, scientists are developing a mathematical and visual analytic toolkit to help health officials quickly analyze pandemics and craft better response strategies.

Scientists at the Department of Energy's Pacific Northwest National Laboratory have created a Pandemic Influenza Planning Tool to model the spread of a disease through various age groups and geographic populations. It also allows decision-makers to carefully assess the benefit of their decisions for different scenarios in advance.

"No single approach provides an optimal strategy when battling the spread of a pandemic," said Robert Brigantic, PNNL operations research scientist, "But, the use of this tool can allow health officials to more accurately predict how a disease might evolve when various mitigation strategies are applied."

These results could be valuable in developing an aggressive preventive strategy and deciding how best to use limited resources.

Brigantic's tool allows officials to easily evaluate potential response options by manipulating modeling parameters and running different simulations. For instance, officials could assess closing schools to decrease disease spread, initiate preventative media campaigns, or evaluate distributing antiviral medications to easily evaluate potential mitigation approaches.

In late September, PNNL demonstrated an early prototype of the tool during a Walla Walla County, Wash., Pandemic Influenza emergency exercise. Officials simulated an H1N1 Swine Flu outbreak and used the tool to predict resource needs and shortfalls, such as the loss of critical staff and lack of hospital beds.

"The tool illustrated how essential services can fail when critical employees became ill," said Gay Ernst, director of emergency management in Walla Walla County. "Visualizing possible disease progression enables us to consider how many critical personnel may be unavailable at one time and plan accordingly."

To help users also understand and visualize the effects of potential scenarios, PNNL teamed with Purdue University to add a visual analytic element to the toolkit called PanViz. It allows decision makers to visually track a simulation of spreading influenza on a video monitor. Users can toggle on and off various decision measures and visually see and examine the impact of those modifications and how they may alter the spread of the outbreak over time across counties in a state.

PNNL has demonstrated the planning tool during its development to Washington State Public Health as well as emergency officials in Los Angeles County and in Indiana. Researchers are improving the system's infectious disease modeling capabilities by making underlying algorithms more sophisticated and precise. Including more mitigation strategies and incorporating input from public health and emergency management experts is a priority as developers enhance the model.

This work was originally developed under a $50,000 subcontract with Purdue University to create the Pandemic Influenza Planning Tool for use by Indiana state as part of its pandemic influenza planning exercises. If additional funding is secured, Brigantic hopes to expand the model capabilities to see how additional social-distancing actions, such as telecommuting, cancelling social events and imposing quarantines might influence the virtual spread of a pandemic. He also envisions incorporating additional social modeling and behavioral responses.

Brigantic and his team are also conducting related modeling and simulation analysis for the Centers for Disease Control and Prevention to establish effective and efficient screening of passengers arriving on international flights for pandemic influenza.

Geoff Harvey | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>