Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overlooked cell key player in preventing age-related vision loss

07.03.2018

Tree-shaped retinal cells called Müller glia may provide a new therapeutic target for treating degenerative eye diseases

Duke Researchers have pinpointed a new therapeutic target for macular degeneration, an eye disease that affects over 10 million Americans and is the leading cause of blindness in adults over 60.


Retinas are built of a stack of neurons that transmit signals from the photoreceptors to the brain. These neurons and the synapses between them are supported by long, tree-shaped cells called Müller glia (in green), which may provide a new therapeutic target for treating degenerative eye diseases.

Credit: Sehwon Koh, Duke University

Clinical trials have shown that injection of human umbilical stem cells, or hUTC, into the retina helps preserve and restore vision in macular degeneration patients. However, the underlying mechanisms behind the therapy remain unknown.

The findings, published online in the Journal of Neuroscience, show that hUTC treatment preserves the function of a retinal cell called the Müller glia in rats with degenerative vision loss.

"This provides strong evidence that Müller glia are important therapeutic targets for treating degenerative eye diseases," said Sehwon Koh, Ph.D., who is the lead author of this paper and a postdoctoral fellow in the laboratory of Cagla Eroglu, Ph.D., an associate professor of cell biology and neurobiology at the Duke University Medical Center. This research was carried out in collaboration with Janssen Research & Development, LLC. 

Retinas are built of a stack of different types of neurons, each connected by synapses that transmit signals from photoreceptors to the brain. Long, tree-shaped cells called Müller glia span the entire thickness of the retina, wrapping their branches around neurons to support their health and encourage the development of synapses.

Macular degeneration involves both the death of photoreceptor neurons -- the classic rods and cones that capture light and convert it into an electric signal -- and the loss of neural synapses within the retina.

Though age is the biggest risk factor for macular degeneration, genetics, race and lifestyle choices such as smoking also play a role.

The Duke scientists first examined the retinas of young rats that were genetically predisposed to an eye disease which causes progressive blindness similar to a disorder called retinitis pigmentosa in humans. They found that the neural synapses within the retina began to deteriorate even before the photoreceptors started to die.

As the number of neural synapses declined, the Müller glia also became sickly, pulling their branches away from neurons and dividing haphazardly.

When the researchers injected human umbilical stem cells behind the retinas of these rats, the Müller glia remained healthy, as did the neural synapses. The treatment succeeded in preserving the majority of the rats' vision and stopped the photoreceptors from dying.

"Previous studies primarily focused on neurons and the retinal pigment epithelium cells as culprits in degeneration," said Eroglu, who is also a member of the Duke Institute for Brain Sciences (DIBS). "Müller glia were not considered an important player in the early stages of retinal degeneration and were not thought to be an important target for hUTC treatment, but our findings suggested otherwise."

To test whether the Müller glia were truly the key players in the synaptic loss, the team used a gene-editing technique to remove a specific gene from Müller glia cells. Deleting this gene is known to cause retinal degeneration, but its function in Müller glia has never been explored.

Without this gene, the Müller glia were defective and bore striking similarities to those in rats that had developed retinitis pigmentosa. In addition, the neural connections within retinas of these rats were malformed, mimicking the problems seen in early stages of retinal degeneration.

"What we are seeing here is that Müller glia are important players in retinal health," Eroglu said. "They are impaired in disease, and effective cellular therapies should target not only other retinal cell types but these cells as well."

###

This research was supported by grants from the National Institutes of Health (NEI 1F3228, EY027997 and NIA 2T32AG000029), the Duke University Chancellor's Discovery Award, Kahn Neurotechnology Development grant and Regeneration Next Initiative Postdoctoral Fellowship. Parts of the work were performed under sponsored research agreements between Duke University and Janssen R&D.

CITATION: "Subretinal Human Umbilical Tissue-Derived Cell Transplantation Preserves Retinal Synaptic Connectivity and Attenuates Mü?ller Glial Reactivity," Sehwon Koh, William J. Chen, Nadine S. Dejneka, Ian R. Harris, Bin Lu, Sergey Girman, Joshua Saylor, Shaomei Wang and Cagla Eroglu. Journal of Neuroscience, EPub Feb. 5, 2018. DOI: 10.1523/JNEUROSCI.1532-17.2018

Media Contact

Kara Manke
kara.manke@duke.edu
919-681-8064

 @DukeU

http://www.duke.edu 

Kara Manke | EurekAlert!

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>