Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observing brain network dynamics to diagnose Alzheimer's disease

16.07.2015

Various types of information can be ascertained by the way blood flows through the brain. When a region of the brain has been activated, blood flow increases and oxygenation rises. By observing variations in blood flow with the help of non-invasive imaging, it is possible to determine which regions are at work at a given point in time and how they work together.

On the basis of this principle, researchers Isik Karahanoglu and Dimitri Van De Ville have managed to visualize the different activation regions of the brain. They combined a new modeling technique and a medical imaging technique in a project bridging EPFL and the University of Geneva (UNIGE).


The new imaging technique could help with the early detection of Alzheimer's disease.

Credit: EPFL/Dimitri Van De Ville

The research, published in Nature Communications, provides new insights into how the brain organizes itself, and sets the stage for early diagnosis of neurological disorders like Alzheimer's, in which these networks break down.

In most brain-related disorders, several neural networks - rather than an isolated region - break down. Understanding how the regions interact provides insight into how these disorders work.

Seeing if a region is in "on" or "off" mode

There is already an imaging technique called "functional magnetic resonance imaging" (fMRI), which records variations in blood flow. But this process has its flaws. Thanks to a complex computational method, the researchers were able to clean up the imperfect signals obtained from fMRI and get a precise and dynamic picture of blood flow in the brain. They can see which regions of the brain are activated in an explicit "on" or "off" mode.

"Imagine taking pictures of a rainbow-coloured windmill that is turning very fast. With the old technique, the colours are fuzzy and run together," said Van De Ville. "With our method we can clearly see the border between each colour on each photo." Similarly, the dynamic map shows which regions activate simultaneously in the brain and where they are located.

Non-stimulated brain for better data gathering

To identify the regions that work together, the tests were done on healthy, non-stimulated subjects. Even when in a state of 'rest' and not being used, a patient's brain has regions that are constantly activating and deactivating. "The patient must not do anything once in the MRI machine. The data are thus not distorted by the stress or fatigue that stimulation or a task could cause," said Karahanoglu.

Surprising results

In all, the researchers identified 13 main networks, i.e. those that send out the strongest signals. On average, four of these networks were active at the same time. "Until now, we thought the regions took turns activating, and that they did so with little coordination," added Van De Ville.

A diagnostic tool for doctors

The next step consists in using this technique to diagnose neurological disorders. Alzheimer disease, for example shows deterioration in brain networks even when clinical symptoms are undetectable or negligible. Using fMRI to detect, as early as possible, cases that are most likely to develop into Alzheimer's would improve drug administration. Drugs currently in development could then be administered during the phase in which they would be most effective. Research along these lines is underway in collaboration with other neuroscience and clinical teams. Isik Karahanoglu, who is currently a post-doctoral fellow at Harvard Medical School, is also applying the technique to better understand alterations in Autism Spectrum Disorder.

This research was made possible through support from the Swiss National Science Foundation, the Bertarelli Foundation and the Center for Biomedical Imaging (CIBM).

Media Contact

Laure-Anne Pessina
laure-anne.pessina@epfl.ch
41-216-930-462

 @EPFL_en

http://www.epfl.ch/index.en.html 

Laure-Anne Pessina | EurekAlert!

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>