Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NSAIDs prevent colon cancer by inducing death of intestinal stem cells that have mutation


Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) protect against the development of colorectal cancer by inducing cell suicide pathways in intestinal stem cells that carry a certain mutated and dysfunctional gene, according to a new study led by researchers at the University of Pittsburgh Cancer Institute (UPCI) and the School of Medicine. The findings were published online today in the Proceedings of the National Academy of Sciences.

Scientists have long known from animal studies and clinical trials that use of NSAIDs, such as aspirin and ibuprofen, lowers the risk of developing intestinal polyps, which can transform into colon cancer. But they have not known why, said senior investigator Lin Zhang, Ph.D., associate professor, Department of Pharmacology and Chemical Biology, Pitt School of Medicine, and UPCI, a partner with UPMC CancerCenter.

"Our study identifies a biochemical mechanism that could explain how this preventive effect occurs," he said. "These findings could help us design new drugs to prevent colorectal cancer, which is the third leading cause of cancer-related deaths in the country."

The research team performed experiments in animal models and examined tumor samples from patients who had taken NSAIDs and those who hadn't. They found that NSAIDs activate the so-called death receptor pathway, which selectively triggers a suicide program in intestinal stem cells that have a mutation in the APC gene that renders the cells dysfunctional. Healthy cells lack the mutation, so NSAIDs cause them no harm. In that manner, the drugs instigate the early auto-destruction of cells that could lead to precancerous polyps and tumors.

"We want to use our new understanding of this mechanism as a starting point to design better drugs and effective cancer prevention strategies for those at high risk of colon cancer," Dr. Zhang said. "Ideally, we could harness the tumor-killing traits of NSAIDs and avoid possible side effects that can occur with their chronic use, such as gastrointestinal bleeding and ulcers."

The research team included lead author Brian Leibowitz, Ph.D., and Jian Yu, Ph.D., of UPCI and the Pitt's Department of Pathology, as well as others from UPCI and Pitt School of Medicine; Sichuan University, China; INCELL Corp, San Antonio, Texas; and Indiana University School of Medicine. The project was funded by National Institutes of Health grants CA106348, CA121105, CA172136, CA129829 and DK085570, and the American Cancer Society.

About UPCI

As the only NCI-designated comprehensive cancer center in western Pennsylvania, UPCI is a recognized leader in providing innovative cancer prevention, detection, diagnosis, and treatment; bio-medical research; compassionate patient care and support; and community-based outreach services. Investigators at UPCI, a partner with UPMC CancerCenter, are world-renowned for their work in clinical and basic cancer research.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see .

Contact: Allison Hydzik
Phone: 412-647-9975

Contact: Jennifer Yates
Phone: 412-647-9966

Allison Hydzik | EurekAlert!

Further reports about: Health Health Sciences Medicine NSAIDs UPCI UPMC academic cancer prevention colon colon cancer death drugs polyps stem cells

More articles from Health and Medicine:

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>