Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NSAIDs prevent colon cancer by inducing death of intestinal stem cells that have mutation

04.11.2014

Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) protect against the development of colorectal cancer by inducing cell suicide pathways in intestinal stem cells that carry a certain mutated and dysfunctional gene, according to a new study led by researchers at the University of Pittsburgh Cancer Institute (UPCI) and the School of Medicine. The findings were published online today in the Proceedings of the National Academy of Sciences.

Scientists have long known from animal studies and clinical trials that use of NSAIDs, such as aspirin and ibuprofen, lowers the risk of developing intestinal polyps, which can transform into colon cancer. But they have not known why, said senior investigator Lin Zhang, Ph.D., associate professor, Department of Pharmacology and Chemical Biology, Pitt School of Medicine, and UPCI, a partner with UPMC CancerCenter.

"Our study identifies a biochemical mechanism that could explain how this preventive effect occurs," he said. "These findings could help us design new drugs to prevent colorectal cancer, which is the third leading cause of cancer-related deaths in the country."

The research team performed experiments in animal models and examined tumor samples from patients who had taken NSAIDs and those who hadn't. They found that NSAIDs activate the so-called death receptor pathway, which selectively triggers a suicide program in intestinal stem cells that have a mutation in the APC gene that renders the cells dysfunctional. Healthy cells lack the mutation, so NSAIDs cause them no harm. In that manner, the drugs instigate the early auto-destruction of cells that could lead to precancerous polyps and tumors.

"We want to use our new understanding of this mechanism as a starting point to design better drugs and effective cancer prevention strategies for those at high risk of colon cancer," Dr. Zhang said. "Ideally, we could harness the tumor-killing traits of NSAIDs and avoid possible side effects that can occur with their chronic use, such as gastrointestinal bleeding and ulcers."

The research team included lead author Brian Leibowitz, Ph.D., and Jian Yu, Ph.D., of UPCI and the Pitt's Department of Pathology, as well as others from UPCI and Pitt School of Medicine; Sichuan University, China; INCELL Corp, San Antonio, Texas; and Indiana University School of Medicine. The project was funded by National Institutes of Health grants CA106348, CA121105, CA172136, CA129829 and DK085570, and the American Cancer Society.

About UPCI

As the only NCI-designated comprehensive cancer center in western Pennsylvania, UPCI is a recognized leader in providing innovative cancer prevention, detection, diagnosis, and treatment; bio-medical research; compassionate patient care and support; and community-based outreach services. Investigators at UPCI, a partner with UPMC CancerCenter, are world-renowned for their work in clinical and basic cancer research.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu . http://www.upmc.com/media

Contact: Allison Hydzik
Phone: 412-647-9975
E-mail: HydzikAM@upmc.edu

Contact: Jennifer Yates
Phone: 412-647-9966
E-mail: YatesJC@upmc.edu

Allison Hydzik | EurekAlert!

Further reports about: Health Health Sciences Medicine NSAIDs UPCI UPMC academic cancer prevention colon colon cancer death drugs polyps stem cells

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>