Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northeastern researchers make breakthrough discovery in cancer treatment

05.03.2015

Michail Sitkovsky, an immunophysiology expert at Northeastern, and his research colleagues have found that supplemental oxygenation could shrink tumors and improve cancer immunotherapy

Michail Sitkovsky, an immunophysiology expert at Northeastern University, and his research colleagues have made a breakthrough discovery in cancer treatment. The new approach, some 30 years in the making, could dramatically increase the survival rate of patients with cancer, which kills some 8 million people each year.


'This discovery shifts the paradigm of decades-long drug development'.

Credit: Brooks Canaday/Northeastern University

The findings were published Wednesday in Science Translational Medicine, an interdisciplinary medical journal founded in 2009 by the American Association for the Advancement of Science.

Sitkovsky et al. found that supplemental oxygenation inhibits the hypoxia-driven accumulation of adenosine in the tumor microenvironment and weakens immunosuppression. This, in turn, could improve cancer immunotherapy and shrink tumors by unleashing anti-tumor T lymphocytes and natural killer cells.

"This discovery shifts the paradigm of decades-long drug development, a process with a low success rate," said Sitkovsky, the Eleanor W. Black Chair and Professor of Immunophysiology and Pharmaceutical Biotechnology at Northeastern and the founding director of the university's New England Inflammation and Tissue Protection Institute.

"Indeed, it is promising that our method could be implemented relatively quickly by testing in clinical trials the effects of oxygenation in combination with different types of already existing immunotherapies of cancer."

The paper--titled "Immunological mechanisms of the antitumor effects of supplemental oxygenation"--was the result of a robust interdisciplinary collaboration between doctors and researchers at some of the country's most prestigious universities, hospitals, and medical schools. Co-authors comprised 12 researchers from NEITPI, the Northeastern-based consortium aimed at understanding the underlying causes and molecular mechanisms of inflammation; Barry Karger, the director of Northeastern's Barnett Institute of Chemical and Biological Analysis; and doctors from the University of Pittsburgh School of Medicine, the University of Miami Miller School of Medicine, Brigham and Women's Hospital, and the Dana-Farber Cancer Institute, where Sitkovsy holds an appointment as a presidential scholar.

The findings build upon Sitkovsky's previous research and represent the culmination of his life's work, which has been supported by Northeastern and the National Institutes of Health. In the early 2000s, Sitkovsky made an important discovery in immunology, which has come to inform his research in cancer biology. He found that a receptor on the surface of immune cells--the A2A adenosine receptor--is responsible for preventing T cells from invading tumors and for "putting to sleep" those killer cells that do manage to enter into the tumors.

His latest work shows that inhaling 40 to 60 percent oxygen--air offers 21 percent oxygen--weakened tumor-protecting signaling through the A2A adenosine receptor and awakened T cells that had gained the ability to invade lung tumors.

"Breathing supplemental oxygen opens up the gates of the tumor fortress and wakes up 'sleepy' anti-tumor cells, enabling these soldiers to enter the fortress and destroy it," Sitkovsy explained. "However," he added, "if anti-tumor immune cells are not present, oxygen will have no impact."

Sitkovsky further noted that the effects of supplemental oxygenation might be even stronger in combination with a synthetic agent that he calls "super-caffeine," which is known to block the tumor-protecting effects of the adenosine receptor. He and Graham Jones, professor and chair of Northeastern's Department of Chemistry and Chemical Biology, are currently collaborating to design the next generation of this drug, which was originally developed for patients with Parkinson's disease.

"The anti-tumor effects of supplemental oxygen can be further improved by the natural antagonist of the A2A adenosine receptor, which happens to be the caffeine in your coffee," Sitkovsky said. "People drink coffee because caffeine prevents the A2A adenosine receptor in the brain from putting us to sleep."

Media Contact

Casey Bayer
c.bayer@neu.edu
617-373-2592

 @Northeastern

http://www.neu.edu 

Casey Bayer | EurekAlert!

Further reports about: A2A Medicine T cells adenosine adenosine receptor caffeine coffee immune receptor tumors

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>