Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northeastern researchers make breakthrough discovery in cancer treatment

05.03.2015

Michail Sitkovsky, an immunophysiology expert at Northeastern, and his research colleagues have found that supplemental oxygenation could shrink tumors and improve cancer immunotherapy

Michail Sitkovsky, an immunophysiology expert at Northeastern University, and his research colleagues have made a breakthrough discovery in cancer treatment. The new approach, some 30 years in the making, could dramatically increase the survival rate of patients with cancer, which kills some 8 million people each year.


'This discovery shifts the paradigm of decades-long drug development'.

Credit: Brooks Canaday/Northeastern University

The findings were published Wednesday in Science Translational Medicine, an interdisciplinary medical journal founded in 2009 by the American Association for the Advancement of Science.

Sitkovsky et al. found that supplemental oxygenation inhibits the hypoxia-driven accumulation of adenosine in the tumor microenvironment and weakens immunosuppression. This, in turn, could improve cancer immunotherapy and shrink tumors by unleashing anti-tumor T lymphocytes and natural killer cells.

"This discovery shifts the paradigm of decades-long drug development, a process with a low success rate," said Sitkovsky, the Eleanor W. Black Chair and Professor of Immunophysiology and Pharmaceutical Biotechnology at Northeastern and the founding director of the university's New England Inflammation and Tissue Protection Institute.

"Indeed, it is promising that our method could be implemented relatively quickly by testing in clinical trials the effects of oxygenation in combination with different types of already existing immunotherapies of cancer."

The paper--titled "Immunological mechanisms of the antitumor effects of supplemental oxygenation"--was the result of a robust interdisciplinary collaboration between doctors and researchers at some of the country's most prestigious universities, hospitals, and medical schools. Co-authors comprised 12 researchers from NEITPI, the Northeastern-based consortium aimed at understanding the underlying causes and molecular mechanisms of inflammation; Barry Karger, the director of Northeastern's Barnett Institute of Chemical and Biological Analysis; and doctors from the University of Pittsburgh School of Medicine, the University of Miami Miller School of Medicine, Brigham and Women's Hospital, and the Dana-Farber Cancer Institute, where Sitkovsy holds an appointment as a presidential scholar.

The findings build upon Sitkovsky's previous research and represent the culmination of his life's work, which has been supported by Northeastern and the National Institutes of Health. In the early 2000s, Sitkovsky made an important discovery in immunology, which has come to inform his research in cancer biology. He found that a receptor on the surface of immune cells--the A2A adenosine receptor--is responsible for preventing T cells from invading tumors and for "putting to sleep" those killer cells that do manage to enter into the tumors.

His latest work shows that inhaling 40 to 60 percent oxygen--air offers 21 percent oxygen--weakened tumor-protecting signaling through the A2A adenosine receptor and awakened T cells that had gained the ability to invade lung tumors.

"Breathing supplemental oxygen opens up the gates of the tumor fortress and wakes up 'sleepy' anti-tumor cells, enabling these soldiers to enter the fortress and destroy it," Sitkovsy explained. "However," he added, "if anti-tumor immune cells are not present, oxygen will have no impact."

Sitkovsky further noted that the effects of supplemental oxygenation might be even stronger in combination with a synthetic agent that he calls "super-caffeine," which is known to block the tumor-protecting effects of the adenosine receptor. He and Graham Jones, professor and chair of Northeastern's Department of Chemistry and Chemical Biology, are currently collaborating to design the next generation of this drug, which was originally developed for patients with Parkinson's disease.

"The anti-tumor effects of supplemental oxygen can be further improved by the natural antagonist of the A2A adenosine receptor, which happens to be the caffeine in your coffee," Sitkovsky said. "People drink coffee because caffeine prevents the A2A adenosine receptor in the brain from putting us to sleep."

Media Contact

Casey Bayer
c.bayer@neu.edu
617-373-2592

 @Northeastern

http://www.neu.edu 

Casey Bayer | EurekAlert!

Further reports about: A2A Medicine T cells adenosine adenosine receptor caffeine coffee immune receptor tumors

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>