Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No evidence that low-frequency magnetic fields accelerate development of Alzheimer's disease and ALS

07.04.2015

Research study by the Mainz University Medical Center investigates the influence of low-frequency magnetic fields on neurodegenerative diseases

Low-frequency alternating magnetic fields such as those generated by overhead power lines are considered a potential health risk because epidemiological studies indicate that they may aggravate, among other things, neurodegenerative disorders such as Alzheimer's disease and amyotrophic lateral sclerosis (ALS).


In the case of animal model Alzheimer's disease, age-related deposits of amyloid-beta protein develop in the brain. This protein can be labeled and thus made visible under a fluorescence microscope.

photo/©: Albrecht Clement

However, a recent study by researchers at the Institute of Pathobiochemistry at the Medical Center of Johannes Gutenberg University Mainz (JGU) has produced no evidence that these fields can cause exacerbation or accelerated disease development in relevant mouse models. Neither learning behavior nor known disease mechanisms at the cellular level were affected. The results of the study have been published in the eminent journal Scientific Reports of the Nature Publishing Group.

The etiology of age-related neurodegenerative disorders such as Alzheimer's disease and amyotrophic lateral sclerosis is not yet understood. Less than 10 percent of patients have a matching family history, which means that the vast proportion of patients develop these diseases for so far unknown reasons. Age-related changes in metabolism, genetic predisposition, or environmental factors have been proposed as possible risk factors.

In fact, according to the results of some epidemiological studies, the low-frequency magnetic fields that are generated, for example, by the alternating current (50 Hz) in power lines and electrical appliances while they are operating, may promote the development of these diseases.

Yet other studies claim that the exposure to magnetic fields does not represent a risk factor in connection with Alzheimer's disease or ALS. Although the current scientific data is inconclusive, the World Health Organization (WHO) has decided to categorize low-frequency magnetic fields as a possible risk factor in Alzheimer's disease.

In both Alzheimer's disease and ALS, there is progressive degeneration of neurons and thus loss of function of various groups of brain cells. "At present, there is an extensive debate among the scientific community about how low-frequency magnetic fields might influence cell function at the molecular level," explained Dr. Albrecht Clement, principal investigator at the Institute of Pathobiochemistry at the Mainz University Medical Center.

"To our knowledge, no comprehensive study has been conducted so far to investigate the long-term effects of these fields on the onset of disease symptoms and the progression of both diseases under controlled conditions."

In the current project, which was financed by the German Federal Office for Radiation Protection (BfS), the researchers have been able to demonstrate for the first time in a long-term study in relevant animal models that controlled exposure to low-frequency magnetic fields over a period of up to 18 months does not influence the onset and progression of Alzheimer's disease and ALS.

A detailed analysis of the characteristic features of each disease showed that their development was in no way related to exposure to low-frequency magnetic fields. In the case of Alzheimer's disease, this also applied to the formation of pathological amyloid-beta protein plaque in the brain while in the case of ALS, there was no effect on the levels of proteins damaged by oxidative stress in the spinal cord.

The inflammatory response in the nervous system that occurs in the course of both diseases was also unaffected during exposure. Moreover, neither learning behavior as an indicator of the progression of Alzheimer's disease nor the onset and the duration of ALS were influenced by the magnetic fields. "These results show that exposure to low-frequency magnetic fields has no effect on either disease-related molecular processes or on potential, as yet unknown, disease mechanisms," said Clement. "Our findings thus tend to confirm the results of previous epidemiological studies that indicate no damaging effects of low-frequency magnetic fields."

Nevertheless, extensive investigation is still necessary in order to clearly establish whether low-frequency magnetic fields have a pathogenic potential in humans or not. The public interest in this issue is demonstrated by the fact that this study was funded by the Federal Office for Radiation Protection.

Publication:
Martina P. Liebl, Johannes Windschmitt, Anna S. Besemer, Anne-Kathrin Schäfer, Helmut Reber, Christian Behl & Albrecht M. Clement, Low-frequency magnetic fields do not aggravate disease in mouse models of Alzheimer's disease and amyotrophic lateral sclerosis, Scientific Reports 5, Article number: 8585
DOI:10.1038/srep08585
http://www.nature.com/srep/2015/150226/srep08585/fig_tab/srep08585_F9.html

Image:
http://www.uni-mainz.de/presse/bilder_presse/04_unimedizin_amyloid-beta-protein-...
In the case of animal model Alzheimer's disease, age-related deposits of amyloid-beta protein develop in the brain. This protein can be labeled and thus made visible under a fluorescence microscope.
photo/©: Albrecht Clement

Contact and further information:
Dr. Albrecht Clement, Institute of Pathobiochemistry
Medical Center of Johannes Gutenberg University Mainz
Duesbergweg 6, 55099 Mainz, GERMANY
phone +49 6131 39-25793, fax +49 6131 39-25792
e-mail: clement@uni-mainz.de
http://www.unimedizin-mainz.de/pathobiochemie/home.html?L=1

Professor Dr. Christian Behl, Institute of Pathobiochemistry
Medical Center of Johannes Gutenberg University Mainz
Duesbergweg 6, 55099 Mainz, GERMANY
phone +49 6131 39-25890, fax +49 6131 39-25792
e-mail: cbehl@uni-mainz.de
http://www.unimedizin-mainz.de/pathobiochemie/home.html?L=1

Weitere Informationen:

http://www.uni-mainz.de/presse/18175_ENG_HTML.php - press release ;
http://www.nature.com/srep/2015/150226/srep08585/full/srep08585.html - article

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>