Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New vaccine production could improve flu shot accuracy

25.07.2017

Influenza virus prevented from adapting to chicken egg host

A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.


Cells of the upper respiratory tract are where influenza virus infection occurs. Red marks basal cells, green marks ciliated cells, and blue marks cell nuclei.

Credit: Rebekah Dumm, Duke University

For decades, vaccine manufacturers have used chicken eggs to grow the flu virus strains included in the seasonal flu shot. But because these human strains frequently mutate to adapt to their new environment in eggs, the resulting vaccine is often an imperfect match to the actual virus that it is supposed to protect against.

Duke researchers have devised a way to keep the human influenza virus from mutating during production, generating a perfect match to the target vaccine in a shorter time frame. Their findings appear in the journal mBio.

"We have solved a fundamental problem that scientists had accepted would be part of vaccine production -- that the virus is always going to mutate if it is grown in eggs," said senior study author Nicholas S. Heaton, Ph.D., assistant professor of molecular genetics and microbiology at Duke University School of Medicine. "This research could lead to a significantly cheaper and more efficacious vaccine."

The influenza vaccine has been notoriously ineffective. During the 2015-2016 flu season, the vaccine reduced the risk of catching a serious bout of the flu by just 42 percent, and that was considered a good year. Most of the time, the vaccine's lackluster performance is blamed on poor strain selection. The World Health Organization tracks which virus strains are circulating and decides which ones should go into the vaccine each year. Because they have to pick months in advance, and the virus is constantly evolving, they sometimes miss the mark.

Yet sometimes they pick the right strain, and still people who get the vaccine aren't adequately protected. A few years ago, scientists figured out why: the receptor that the virus uses to get into cells is shaped differently in a human nose than it is in a chicken egg. The human virus has to alter the key it carries with it -- a protein called hemagglutinin (HA) -- so that it can operate in its new locale. Because hemagglutinin also happens to be the part of the flu vaccine that induces an immune response in people (it's the H in a virus name like H5N1), each mutation renders the vaccine less effective.

Heaton and his team attempted to engineer a virus that would both grow happily in chicken eggs and produce the HA protein required to protect people. They expressed two versions of hemagglutinin -- one adapted to eggs and one adapted to humans -- on one virus particle.

"We reasoned that the egg-adapted HA would do all the heavy lifting," Heaton said. "It could do the virus entry work and just bring the other (human) one along for the ride. In effect, that would alleviate the strong selective pressure on the human HA to mutate."

Heaton and his colleagues constructed this "bivalent," or two-strain, virus and grew it in chicken cells. They showed that it packaged twice as much protein as a "monovalent" virus that carries just one HA. When they vaccinated mice with either the bivalent or monovalent vaccine (both with genetically identical human HA proteins), they found equal immune responses across the board.

Next, the researchers wanted to see if their technology could tackle some of the worst-growing vaccine strains in history. In 2002, the Fujian strain grew so poorly in production that, although it was the major circulating strain that the time, it could not be included in the vaccine. As a result, nobody was vaccinated against Fujian that year, and vaccine efficacy was very poor.

Heaton and his team plugged the HA from that infamous Fujian strain into their egg-adapted system and rescued the virus right off the bat. When the two HA proteins were put together, it grew five orders of magnitude more virus.

After the researchers had grown the virus in chicken eggs for a while, they harvested the virus and sequenced the human HA protein. They did not find a single mutation.

"Because viruses typically mutate during vaccine production, manufacturers have to screen for mutations, and decide which ones can be tolerated and which ones can't," Heaton said. "If we can eliminate mutations, we can cut back dramatically on production time."

Though the technology is still in its infancy, the researchers have successfully used it to make bivalent viruses with a half dozen different HA molecules. Currently, they are making their own versions of the vaccines that are under production for the 2017 and 2018 flu seasons, and are planning to test how they differ in terms of growth, genetic stability, and actual protection.

"There's a laundry list of problems with the flu vaccine, but this is something that we can solve now, not 10 or 15 years down the line," said Heaton. "We're not proposing to change any kind of vaccine production or vaccine methods. We're just proposing to start production with a different virus. It could be a relatively simple fix."

###

The research was supported in part by the Duke School of Medicine Whitehead Scholarship and the National Institutes of Health (T32-GM007184-41 and T32-CA009111).

CITATION: "Rationally designed influenza virus vaccines that are antigenically stable during growth in eggs," Alfred T. Harding, Brook E. Heaton, Rebekah E. Dumm, and Nicholas S. Heaton. mBio, June 6, 2017. https://doi.org/10.1128/mBio.00669-17.

Media Contact

Karl Bates
karl.bates@duke.edu
919-681-8054

 @DukeU

http://www.duke.edu 

Karl Bates | EurekAlert!

Further reports about: chicken eggs flu flu shot flu vaccine hemagglutinin influenza virus seasonal flu virus strains

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>