Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique paints tissue samples with light

25.03.2015

One infrared scan can give pathologists a window into the structures and molecules inside tissues and cells, enabling fast and broad diagnostic assessments, thanks to an imaging technique developed by University of Illinois researchers and clinical partners.

Using a combination of advanced microscope imaging and computer analysis, the new technique can give pathologists and researchers precise information without using chemical stains or dyes. Led by Rohit Bhargava, U. of I. professor of bioengineering and member of the Beckman Institute for Advanced Science and Technology, the researchers published their findings in the journal Technology.


Breast tissue is computationally stained using data from infrared imaging without actually staining the tissue, enabling multiple stains on the same sample. From left, the image shows a Hematoxylin and Eosin stain (pink-blue), molecular staining for epithelial cells (brown color) and Masson's trichrome(blue, red at right).

Credit: Rohit Bhargava, University of Illinois

"Any sample can be analyzed for desired stains without material cost, time or effort, while leaving precious tissue pristine for downstream analyses," Bhargava said.

To study tissue samples, doctors and researchers use stains or dyes that stick to the particular structure or molecule they are looking for. Staining can be a long and exacting process, and the added chemicals can damage cells. Doctors also have to choose which things to test for, because it's not always possible to obtain multiple samples for multiple stains from one biopsy.

The new, advanced infrared imaging technique uses no chemical stains, instead scanning the sample with infrared light to directly measure the chemical composition of the cells. The computer then translates spectral information from the microscope into chemical stain patterns, without the muss or fuss of applying dyes to the cells.

"We're relying on the chemistry to generate the ground truth and act as the 'supervisor' for a supervised learning algorithm," said David Mayerich, first author of the study. Mayerich was a post-doctoral fellow at the Beckman Institute and now is a professor at the University of Houston. "One of the bottlenecks in automated pathology is the extensive processing that must be applied to stained images to correct for staining artifacts and inconsistencies. The ability to apply stains uniformly across multiple samples could make these initial image processing steps significantly easier and more robust."

The researchers reproduced a wide array of molecular stains by computationally isolating the spectra of specific molecules. This allows the user to simply tune to a required stain, for as many different stains as are necessary - all without damaging the original tissue sample, which can then be used for other tests.

"This approach promises to have immediate and long-term impact in changing pathology to a multiplexed molecular science - in both research and clinical practice," Bhargava said.

###

The National Institutes of Health supported this work. The Carle Foundation Hospital in Urbana, Illinois, and the University of Illinois Cancer Center at the University of Illinois at Chicago were partners in this work.

Editor's note: To reach Rohit Bhargava, call 217-265-6596; email: rxb@illinois.edu.

The paper, "Stain-less staining for computed histopathology," is available online.

Media Contact

Liz Ahlberg
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Liz Ahlberg | University of Illinois at Urbana-Champaign

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>