Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique paints tissue samples with light

25.03.2015

One infrared scan can give pathologists a window into the structures and molecules inside tissues and cells, enabling fast and broad diagnostic assessments, thanks to an imaging technique developed by University of Illinois researchers and clinical partners.

Using a combination of advanced microscope imaging and computer analysis, the new technique can give pathologists and researchers precise information without using chemical stains or dyes. Led by Rohit Bhargava, U. of I. professor of bioengineering and member of the Beckman Institute for Advanced Science and Technology, the researchers published their findings in the journal Technology.


Breast tissue is computationally stained using data from infrared imaging without actually staining the tissue, enabling multiple stains on the same sample. From left, the image shows a Hematoxylin and Eosin stain (pink-blue), molecular staining for epithelial cells (brown color) and Masson's trichrome(blue, red at right).

Credit: Rohit Bhargava, University of Illinois

"Any sample can be analyzed for desired stains without material cost, time or effort, while leaving precious tissue pristine for downstream analyses," Bhargava said.

To study tissue samples, doctors and researchers use stains or dyes that stick to the particular structure or molecule they are looking for. Staining can be a long and exacting process, and the added chemicals can damage cells. Doctors also have to choose which things to test for, because it's not always possible to obtain multiple samples for multiple stains from one biopsy.

The new, advanced infrared imaging technique uses no chemical stains, instead scanning the sample with infrared light to directly measure the chemical composition of the cells. The computer then translates spectral information from the microscope into chemical stain patterns, without the muss or fuss of applying dyes to the cells.

"We're relying on the chemistry to generate the ground truth and act as the 'supervisor' for a supervised learning algorithm," said David Mayerich, first author of the study. Mayerich was a post-doctoral fellow at the Beckman Institute and now is a professor at the University of Houston. "One of the bottlenecks in automated pathology is the extensive processing that must be applied to stained images to correct for staining artifacts and inconsistencies. The ability to apply stains uniformly across multiple samples could make these initial image processing steps significantly easier and more robust."

The researchers reproduced a wide array of molecular stains by computationally isolating the spectra of specific molecules. This allows the user to simply tune to a required stain, for as many different stains as are necessary - all without damaging the original tissue sample, which can then be used for other tests.

"This approach promises to have immediate and long-term impact in changing pathology to a multiplexed molecular science - in both research and clinical practice," Bhargava said.

###

The National Institutes of Health supported this work. The Carle Foundation Hospital in Urbana, Illinois, and the University of Illinois Cancer Center at the University of Illinois at Chicago were partners in this work.

Editor's note: To reach Rohit Bhargava, call 217-265-6596; email: rxb@illinois.edu.

The paper, "Stain-less staining for computed histopathology," is available online.

Media Contact

Liz Ahlberg
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Liz Ahlberg | University of Illinois at Urbana-Champaign

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>