Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New role for insulin: Studies tie the hormone to brain's 'pleasure' center

27.10.2015

Findings also shed light on food choices and obesity

Insulin, the hormone essential to all mammals for controlling blood sugar levels and a feeling of being full after eating, plays a much stronger role than previously known in regulating release of dopamine, a neurotransmitter that helps control the brain's reward and pleasure centers, new studies by researchers at NYU Langone Medical Center show.


Image of a rodent brain cell, with insulin receptors (seen as many green dots) that when activated spur release of dopamine (In background in pink is neuron nucleus.)

Courtesy of Nature Communications

"We found that when there's more insulin in the brain, there will be more dopamine released, not less," says study senior investigator and NYU Langone neuroscientist Margaret Rice, PhD. Her team's new findings from laboratory and behavioral studies with rodents are set to appear in the journal Nature Communications online Oct. 27.

Rice says the experiments she and her colleagues conducted not only reaffirm that insulin helps trigger the reuptake of dopamine when insulin levels rise, but also are the first to show that the net effect is a rise in dopamine levels. The results may also be the first to demonstrate that insulin's role in the dopamine pathway may affect and explain food choices.

In one set of experiments, Rice and her colleagues recorded a 20 percent to 55 percent increase in dopamine released in the striatal region of the rodent brain (where dopamine's effects on the brain are felt and which governs the body's response to getting a reward). The rise occurred along the same timeframe as the rise in insulin activity needed to process any food sugars the mice and rats ate. And this occurred despite the reabsorption, or reuptake, of dopamine that in other regions of the brain tells an animal that its appetite is satisfied.

Rice and study co-principal investigator Kenneth Carr, PhD, also conducted separate experiments with rats in which they found that animals fed low-calorie diets had a 10-fold greater sensitivity to increasing insulin levels in the brain (meaning that it took only a tenth of a rise in insulin levels as seen in rats on a normal diet to spur dopamine release). By contrast, rats on high-calorie diets lost all striatal-brain insulin responsiveness. In addition, rats offered a choice between a drink reward that was paired with either an insulin antibody injection to block hormone signaling or a mock placebo injection always favored the drink-injection combination that led to intact insulin signaling (and more dopamine).

"Our work establishes what we believe is a new role for insulin as part of the brain's reward system and suggests that rodents, and presumably people, may choose to consume high-carb or low-fat meals that release more insulin - all to heighten dopamine release," says Rice, a professor in the Department of Neurosurgery at NYU Langone and a member of NYU Langone's Druckenmiller Neuroscience Institute.

Rice says this finding is important because chronically elevated insulin levels and lowered insulin sensitivity in the brain are closely tied to obesity and type II diabetes, both very prevalent in the United States.

Rice says the team plans further experiments on how insulin influences the mammalian brain's control over food motivation and reward pathways, and whether changes in insulin sensitivity brought about by obesity can be reversed or even prevented.

"If our future experiments prove successful," says Rice, "it could confirm our hypothesis that when people refer to an insulin-glucose rush, they may really be referring to a dopamine reward rush. And there are healthy ways to get that by making smart food choices."

###

Funding support for the research was provided by grants from the National Institute on Drug Abuse and the National Institute of Neurological Disorders and Stroke, both members of the National Institutes of Health. Corresponding grant numbers are R01 DA033811, a multiple-principal investigator award; R01 DA03956; and R01 NS036362. Additional funding support came from a Brain and Behavior Research Institute NARSAD independent investigator award.

Besides Rice and Carr, other NYU Langone researchers involved in the study were lead study investigator Melissa Stouffer, PhD; Catherine Woods, BA; Jyoti Patel, PhD; Christian Lee, PhD; Paul Whitkovsky, PhD; Li Bao, PhD; Robert Machold, PhD; Kymry Jones, PhD; Soledad Cabeza de Vaca, PhD; and Maarten Reith, PhD.

Media Inquiries:

David March
Phone: 212-404-3528
david.march@nyumc.org

Media Contact

David March
david.march@nyumc.org
212-404-3528

 @NYULMC

http://www.med.nyu.edu 

David March | EurekAlert!

Further reports about: Institute Langone Medicine dopamine food choices hormone rise

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>