Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New plasmonic sensor improves early cancer detection

31.05.2017

A new plasmonic sensor developed by researchers at the University of Illinois at Urbana-Champaign will serve as a reliable early detection of biomarkers for many forms of cancer and eventually other diseases.

The sensor has been proven reliable to detect the presence of the cancer biomarker carcinoembryonic antigen (CEA) to the magnitude of 1 nanogram per milliliter. Most humans carry at least some amounts of CEA with an average range of 3-5 nanograms per milliliter. The researchers chose to focus on CEA because its presence in higher concentrations is an early indicator of many forms of cancer, including lung and prostate cancers.


This image shows a plasmonic nanocup metal-insulator-metal cavity design used to detect the cancer biomarker CEA. The nanocavity leads to optical energy storage which is out-coupled to the far field by a refractive index increase. Therefore, CEA binding to its immobilized antibody leads to a sensitive increase in the transmission intensity at the resonance wavelength with no spectral shift.

Credit: University of Illinois

"Cancer is one of the major causes of death in the United States as more than half of the new patients are diagnosed after it has already spread," Ameen explained. "This shows the gravity with which this problem needs to be addressed and this new design of a plasmonic sensor helps to detect the lower concentration of CEA at an earlier state."

The plasmonic sensor is an improvement of the current state-of-the-art method for a few reasons. First, it was able to improve the limit of detection by at least two orders of magnitude. In fact, most methods aren't able to accurately detect the presence of CEA until it reaches a higher concentration.

Secondly, because it works with much less instrumentation, it is less expensive and more portable and doesn't require nearly the expertise to make a reading. It also means instead of needing a vile of blood for a test, a simple finger prick will do. This aspect will be especially important for those who don't live close to an advanced medical facility, including those in developing nations.

The research team was led by Logan Liu, and Lynford Goddard, associate professors of electrical and computer engineering with students Abid Ameen and Lisa Hackett carrying out the project. The team published its results in Advanced Optical Materials as a cover article.

The device combines two sensing methods, which hadn't until this time been able to be used together. First, it uses a 3D multi-layer nanocavity in a nanocup array, which allows for the light to be stored in the cavity comprised of two metal layers (in this case gold) surrounding one insulator layer.

Secondly, it uses plasmonic sensing, which detects sensitive nanoscale light-matter interactions with biomolecules on the device surface. It produces an enhanced field confinement and an enhanced localized field. Because of the plasmonic structure, the light is out-coupled more efficiently as the surrounding refractive index changes.

"By combining plasmonic properties and the optical cavity properties together in one device we are able to detect lower concentration of biomarker by light confinement and transmission in the cavity layer and from the top of the device respectively, based on the thickness of the multilayers and the refractive index of the cavity layer," Ameen explained.

"The nanocup array provides extraordinary optical transmission," Hackett added. "If you take a thin metal film and try to shine light through it, there will be almost no light transmitted. However if you put a periodic array of nanoholes, or in our case a nanocup structure, then what you see is a resonance condition where at a certain wavelength, you will have a peak in the transmission through this device."

Because the resonance is changing at a single wavelength and because the spectral features have reference locations, excitation and detection can be done reliably without any specialized equipment. With this device, a LED light source can be used instead of a laser and a photocell or camera image can be used instead of a high-end spectrometer.

"Because of our multi-layer high-performing plasmonic structure, we were able to very efficiently scatter out the light to the far field," Hackett said. "When you increase the refractive index of the sensing region, it causes the stored energy to couple out. Usually when you have these types of refractometric plasmonic sensors, you have a shift in the angle or a change in your wavelength when the resonance condition is met. In our case, because we have incorporated a nanocavity, we have a fixed resonance wavelength."

As the concentration of biomolecules (in this case CEA) increases, so does the refractive index, which produces an increase of the transmission intensity at a fixed wavelength that can be easily detected.

"What that means in the future is we can take this sensor, which we've optimized and incorporated with an LED and have the most compact instrumentation, in fact no sophisticated instrumentation at all," Ameen said. "This allows high performance plasmonic sensing the ability to go toward portable sensing systems and large scale portable sensors."

For now, detection methods for cancer biomarkers are being implemented in high-risk patients, especially cancer patients in remission. They take time, specialized equipment, and are labor-intensive.

In the future, however, because of the portability and inexpensive nature of this method, it can be more easily administered to any patient at routine check-ups. This would allow those with an elevated concentration of CEA to be treated even before cancer cells spread in the body.

"Right now cancer is detected closer to end stage," Ameen noted. "We want to detect it as early as possible. Our device is providing us with that opportunity."

While this study demonstrated detection in a small human serum sample, the method could be used for the detection of other diseases down the road.

"In the future, if they are made very cost-effective and portable," Hackett said, "it would be great to see people be able to take more control over their health and monitor something like this on their own."

Abid Ameen | EurekAlert!

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>