Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecular target identified for treating cerebral malaria

30.01.2015

A drug already approved for treating other diseases may be useful as a treatment for cerebral malaria, according to researchers at Harvard T. H. Chan School of Public Health. They discovered a novel link between food intake during the early stages of infection and the outcome of the disease, identifying two molecular pathways that could serve as new targets for treatment.

"We have known for a long time that nutrition can affect the course of infectious disease, but we were surprised at how rapidly a mild reduction in food intake could improve outcome in a mouse malaria model," said senior author James Mitchell, associate professor of genetics and complex diseases. "However, the real importance of this work is the identification of unexpected molecular pathways underlying cerebral malaria that we can now target with existing drugs."

The study appears online January 30, 2015 in Nature Communications.

Cerebral malaria -- a severe form of the disease -- is the most serious consequence of infection by the parasite Plasmodium falciparum, resulting in seizures, coma, and death. Currently there is a lack of safe treatment options for cerebral malaria, particularly for use in children, who represent the majority of cases. Even patients who receive early treatment with standard antimalarial chemotherapeutic agents run a high risk of dying, despite clearance of the parasite. Moreover, around 25% of survivors develop neurological complications and cognitive impairment.

Lead authors Pedro Mejia and J. Humberto Treviño-Villarreal, both researchers at Harvard T.H. Chan School of Public Health, found that leptin--a hormone secreted from fat tissue with roles in suppressing appetite, but also in activating adaptive immune and inflammatory responses--is increased upon infection in a mouse model of cerebral malaria, and turns out to be a major bad actor in promoting neurological symptoms and death.

Remarkably, Mejia, Treviño-Villarreal and colleagues showed that reducing leptin using a variety of means, either genetically, pharmacologically, or nutritionally by reducing food intake during the first two days of infection, protected against cerebral malaria.

The researchers also found that leptin acted primarily on cytotoxic T cells by turning on the well-studied mTOR protein, for which pharmacologic inhibitors are readily available. In their animal model, treating mice with the mTOR inhibitor rapamycin protected them against the neurological complications of cerebral malaria.

Protection was due in part to a preservation of the blood brain barrier, which prevented the entry of blood cells carrying the parasites into the brain. As rapamycin is already FDA-approved for use in humans, trials in humans for cerebral malaria treatment with this drug may be possible, according to the researchers.

This study was the result of an ongoing collaboration between the Mitchell lab in the Department of Genetics and Complex Diseases and the labs of Manoj Duraisingh and Dyann Wirth in the Department of Immunology and Infectious Diseases. Other Harvard T.H. Chan School of Public Health authors included Christopher Hine, Eylul Harputlugil, Samantha Lang, Ediz Calay and Rick Rogers.

This study was supported in part by grants from NIH (DK090629 and AG036712) and the Glenn Foundation for Medical Research to J.R.M.; a Harvard T.H. Chan School of Public Health Yerby postdoctoral fellowship to Mejia, and financial support from the Universidad Auto´noma de Nuevo Leo´n to Treviño-Villarreal.

"Dietary restriction protects against experimental cerebral malaria via leptin modulation and T-cell mTORC1 suppression," Pedro Mejia, J. Humberto Treviño -Villarreal, Christopher Hine, Eylul Harputlugil, Samantha Lang, Ediz Calay, Rick Rogers, Dyann Wirth, Manoj Duraisingh, and James R. Mitchell, Nature Communications, online January 30, 2015, 6:6050 doi: 10.1038/ncomms7050 (2014).

Visit the Harvard Chan website for the latest news, press releases, and multimedia offerings.

Harvard T.H. Chan School of Public Health brings together dedicated experts from many disciplines to educate new generations of global health leaders and produce powerful ideas that improve the lives and health of people everywhere. As a community of leading scientists, educators, and students, we work together to take innovative ideas from the laboratory to people's lives--not only making scientific breakthroughs, but also working to change individual behaviors, public policies, and health care practices. Each year, more than 400 faculty members at Harvard Chan teach 1,000-plus full-time students from around the world and train thousands more through online and executive education courses. Founded in 1913 as the Harvard-MIT School of Health Officers, the School is recognized as America's oldest professional training program in public health.

Marge Dwyer | EurekAlert!

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>