Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecular target identified for treating cerebral malaria

30.01.2015

A drug already approved for treating other diseases may be useful as a treatment for cerebral malaria, according to researchers at Harvard T. H. Chan School of Public Health. They discovered a novel link between food intake during the early stages of infection and the outcome of the disease, identifying two molecular pathways that could serve as new targets for treatment.

"We have known for a long time that nutrition can affect the course of infectious disease, but we were surprised at how rapidly a mild reduction in food intake could improve outcome in a mouse malaria model," said senior author James Mitchell, associate professor of genetics and complex diseases. "However, the real importance of this work is the identification of unexpected molecular pathways underlying cerebral malaria that we can now target with existing drugs."

The study appears online January 30, 2015 in Nature Communications.

Cerebral malaria -- a severe form of the disease -- is the most serious consequence of infection by the parasite Plasmodium falciparum, resulting in seizures, coma, and death. Currently there is a lack of safe treatment options for cerebral malaria, particularly for use in children, who represent the majority of cases. Even patients who receive early treatment with standard antimalarial chemotherapeutic agents run a high risk of dying, despite clearance of the parasite. Moreover, around 25% of survivors develop neurological complications and cognitive impairment.

Lead authors Pedro Mejia and J. Humberto Treviño-Villarreal, both researchers at Harvard T.H. Chan School of Public Health, found that leptin--a hormone secreted from fat tissue with roles in suppressing appetite, but also in activating adaptive immune and inflammatory responses--is increased upon infection in a mouse model of cerebral malaria, and turns out to be a major bad actor in promoting neurological symptoms and death.

Remarkably, Mejia, Treviño-Villarreal and colleagues showed that reducing leptin using a variety of means, either genetically, pharmacologically, or nutritionally by reducing food intake during the first two days of infection, protected against cerebral malaria.

The researchers also found that leptin acted primarily on cytotoxic T cells by turning on the well-studied mTOR protein, for which pharmacologic inhibitors are readily available. In their animal model, treating mice with the mTOR inhibitor rapamycin protected them against the neurological complications of cerebral malaria.

Protection was due in part to a preservation of the blood brain barrier, which prevented the entry of blood cells carrying the parasites into the brain. As rapamycin is already FDA-approved for use in humans, trials in humans for cerebral malaria treatment with this drug may be possible, according to the researchers.

This study was the result of an ongoing collaboration between the Mitchell lab in the Department of Genetics and Complex Diseases and the labs of Manoj Duraisingh and Dyann Wirth in the Department of Immunology and Infectious Diseases. Other Harvard T.H. Chan School of Public Health authors included Christopher Hine, Eylul Harputlugil, Samantha Lang, Ediz Calay and Rick Rogers.

This study was supported in part by grants from NIH (DK090629 and AG036712) and the Glenn Foundation for Medical Research to J.R.M.; a Harvard T.H. Chan School of Public Health Yerby postdoctoral fellowship to Mejia, and financial support from the Universidad Auto´noma de Nuevo Leo´n to Treviño-Villarreal.

"Dietary restriction protects against experimental cerebral malaria via leptin modulation and T-cell mTORC1 suppression," Pedro Mejia, J. Humberto Treviño -Villarreal, Christopher Hine, Eylul Harputlugil, Samantha Lang, Ediz Calay, Rick Rogers, Dyann Wirth, Manoj Duraisingh, and James R. Mitchell, Nature Communications, online January 30, 2015, 6:6050 doi: 10.1038/ncomms7050 (2014).

Visit the Harvard Chan website for the latest news, press releases, and multimedia offerings.

Harvard T.H. Chan School of Public Health brings together dedicated experts from many disciplines to educate new generations of global health leaders and produce powerful ideas that improve the lives and health of people everywhere. As a community of leading scientists, educators, and students, we work together to take innovative ideas from the laboratory to people's lives--not only making scientific breakthroughs, but also working to change individual behaviors, public policies, and health care practices. Each year, more than 400 faculty members at Harvard Chan teach 1,000-plus full-time students from around the world and train thousands more through online and executive education courses. Founded in 1913 as the Harvard-MIT School of Health Officers, the School is recognized as America's oldest professional training program in public health.

Marge Dwyer | EurekAlert!

More articles from Health and Medicine:

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>