Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model predicts Ebola epidemic in Liberia could be ended by June

14.01.2015

The Ebola epidemic in Liberia could likely be eliminated by June if the current high rate of hospitalization and vigilance can be maintained, according to a new model developed by ecologists at the University of Georgia and Pennsylvania State University.

The model includes such factors as the location of infection and treatment, the development of hospital capacity and the adoption of safe burial practices and is "probably the first to include all those elements," said John Drake, an associate professor in the UGA Odum School of Ecology who led the project. The study appears in the open access journal PLOS Biology Jan. 13.


John Drake, an associate professor in the University of Georgia Odum School of Ecology, led a project to develop a new model that determined the Ebola epidemic in Liberia could likely be eliminated by June if the current high rate of hospitalization and vigilance can be maintained.

Credit: Andrew Davis Tucker/University of Georgia

Drake said that the UGA model should be useful to public health officials as they continue to combat the Ebola epidemic because it offers both general insights and realistic forecasts, something few models are able to do.

During the fall of 2014, the authors ran the model for five different hospital capacity scenarios. For the worst case, with no further increase in hospital beds, the median projection was for 130,000 total cases through the end of 2014; for the best case--an increase of 1,400 more beds, for roughly 1,700 total or an 85 percent hospitalization rate--the median projection was 50,000 cases.

After the authors updated it with more recent information collected through Dec. 1, the model projected that, if an 85 percent hospitalization rate can be achieved, the epidemic should be largely contained by June.

"That's a realistic possibility but not a foregone conclusion," Drake said. "What's needed is to maintain the current level of vigilance and keep pressing forward as hard as we can."

Epidemic modeling is an important tool that helps public health officials design, target and implement policies and procedures to control disease transmission, and several models of the 2014 Ebola epidemic have already been published. According to Drake, many of these models seek to estimate the disease's reproductive number--the number of new cases that one infected individual can generate.

"This is useful because it says how far transmission must be reduced to contain the epidemic," he said. "Our model does this too, but it does other stuff as well. It aims to be intermediate in complexity--it captures all the things we think to be most important and ignores the rest."

Those important variables include infection and treatment setting, individual variation in infectiousness, the actual build-up of hospital capacity over time and changing burial practices. The researchers used a mathematical formulation known as branching processes--a method for keeping track of all possible epidemic outcomes in proportion to their probabilities--calibrated with newly developed methods.

To build this more complex model, Drake and his colleagues started with information gleaned from earlier Ebola outbreaks. They included data about variables such as the numbers of patients hospitalized health care workers infected, which allowed them to estimate the level of under-reporting; rates of transmission in hospitals, the community and from funerals; and the effectiveness of infection control measures.

Once they had a working model with plausible parameters, they fine-tuned it using data from the World Health Organization and the Liberia Ministry of Health for the period from July 4 through Sept. 2, 2014. This included information about new cases as well as changes in behavior and public health interventions during that time, such as the addition of roughly 300 hospital beds and the adoption of safer burial practices.

Liberia continued to add hospital beds after Sept. 2, so in mid-December, Drake and his team updated the model to include information collected through Dec.1. Using reported data rather than estimates from the earlier version of the model significantly cut down on the range of future possibilities, showing that the response by the Liberian government and international groups had greatly reduced the likelihood of a massive epidemic.

The model should prove useful beyond the current Ebola crisis, Drake said. "We introduced a new method for model fitting--the method of plausible parameter sets--that could be used in future rapid response scenarios."

Plausible parameter sets use recorded data that falls within the range of possibilities generated by the model at least 500 times, meaning that the model "fits" the data closely. This keeps the model's projections in line with observed reality, making it particularly useful for investigating a wide range of realistic potential interventions and accounting for the impacts of human behavior on disease transmission.

###

The study is available online at http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002056.

Model coauthors were RajReni B. Kaul, Laura W. Alexander, Suzanne M. O'Regan, Andrew M. Kramer, J. Tomlin Pulliam and Andrew W. Park of UGA's Odum School and Matthew J. Ferrari of Pennsylvania State University. The research was conducted under the auspices of the Ebola Modeling Working Group of the National Institutes of Health Institute of General Medical Sciences Models of Infectious Disease Agent Study.

For more information about the Odum School of Ecology, see http://www.ecology.uga.edu

Media Contact

John M. Drake
jdrake@uga.edu
706-583-5539

 @universityofga

http://www.uga.edu 

John M. Drake | EurekAlert!

Further reports about: Ebola Health Odum UGA disease transmission epidemic estimate public health variables

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>