Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Mechanism for Febrile Seizures in Young Children discovered

03.11.2014

Febrile seizures are among the most dreaded complications of infectious diseases in small children. An international research team composed of experts from the Universities of Tübingen, Leuven and Luxembourg has now made a breakthrough by demonstrating the existence of a previously unknown cause for this most frequent form of epileptic attacks in small children. As a study just published in the journal "Nature Genetics" shows, mutations in the STX1B gene are responsible for the children's pathological reactions to fever. The scientists now hope to develop new forms of therapy on the basis of their discoveries.

The gene mutations lead to an impaired regulation in the release of certain nerve cell messenger substances. The consequence of this is an increase of involuntary electrical discharges in the brain, accompanied by epileptic febrile seizures. In the long run, the newly discovered gene alterations can also be the source of serious epilepsy and mental disability.

Febrile seizures are the most frequent form of childhood epileptic attacks and affect roughly two to four per cent of all children worldwide. They often occur between the ages of three months and five years and can even appear upon mild hyperthermia. What is apparently even more decisive than the fever level, however, is the speed with which the fever rises.

"This explains why children can experience a febrile seizure even before the parents have noticed that the child is ill," says Professor Holger Lerche, M.D., Director of the Hertie Institute for Clinical Brain Research (HIH) and Medical Director of the Department of Neurology and Epileptology at the University of Tübingen. Parents naturally become worried when a small child shows a tendency to fever attacks.

However, the prospects in most cases are good: the attacks subside by the time of school age, and damaging aftereffects remain present only in rare and exceptional cases. The factors which contribute to the development of epilepsy from simple febrile seizures are still largely unknown.

"Genetic predisposition plays an important role. But up to now there has been an inadequate understanding of which genomic mutations are involved in detail," says the study's co-initiator, Professor Yvonne Weber, M.D., Assistant Medical Director of the Department of Neurology and Epileptology at the University of Tübingen.

The team of researchers came upon the track of these genetic mutations via exome sequencing, a special technique for examining a partial section of the genetic material. Even though the exome makes up only about one per cent of the human genotype, it also contains most of the pathogenic genetic alterations (mutations) which have been found to date. Analysis of genetic material first revealed STX1B mutations in two large families whose members are prone to both febrile seizures and epileptic attacks.

The analysis was then widened to include further patients, which led to the discovery of four further mutations. Here too, the affected persons suffered from febrile seizures and serious epileptic attacks, which had resulted over and above this in mental disabilities. "In other words, the STX1B mutations gave us an important clue: they do more than trigger epileptic febrile seizures, which of themselves often subside in these small patients by the time of the first school year; the mutations may also be the cause of serious cases of epilepsy, with consequent impairment of intellectual development", as Lerche explains. The researchers now hope to turn these insights to practical advantage in the form of better methods of treatment and even, in the ideal case, to successfully prevent the development of epilepsy.

Together with experts in the field of zebrafish research from the University of Leuven, Belgium and the University of Luxembourg's Centre for Systems Biomedicine (LCSB), the neuroscientists were able to confirm the impact of the newly discovered STX1B mutations with the aid of a model system. Zebrafish provide an excellent model for the study of epilepsy.

In the zebrafish, the development of organs such as the brain takes place at the level of molecular mechanisms in much the same way as in humans. "We were able to show not only that similar patterns of epileptiform attacks also occur in zebrafish with genetically altered STX1B genes, but also that brainwave changes appeared which were clearly aggravated by hyperthermia - as in the case of fever," says Dr. Camila Esguerra, the principal investigator who led this part of the study at the University of Leuven and is now in the process of forming a new research team at the University of Oslo, Norway.

Zebrafish are also especially well-suited for the development of new avenues of treatment. Together with Dr. Alexander Crawford (Luxembourg), Dr. Esguerra has already found a substance which can prevent the most violent form of attacks in zebrafish. "We hope that from this we will be able to develop a new drug in a few years which will prevent the development of certain forms of serious epilepsy in childhood," says Crawford. In addition, a search for new substances will also be carried out in STX1B mutations.

The project also included clinical and genetic experts of the EuroEPINOMICS Consortium, a European Science Foundation network initiated and directed by scientists in Tübingen, Kiel and Antwerp and funded in Germany with 2.5 million Euros from the German Research Foundation. This has brought clinicians together with scientists in the field of basic research to study both the genetic mechanisms of epilepsy and avenues for new methods of therapy.

Still another network, "IonNeurONet" is part of this project and is carrying on a search for the causes of rare forms of epilepsy and other nervous disorders (e.g. rare forms of migraine as well as retinal and muscular diseases). With the help of the German Federal Ministry for Education and Research (BMBF), which has provided support for the network, patients with the corresponding impairments have been gained as test subjects for the study.

Such large-scale networks, with the corresponding numbers of patients, are essential for the discovery and confirmation of new genetic defects. They are also a prerequisite for later clinical trials to confirm research results in patients. The work described here has brought the scientists and physicians of the present study a step closer to a discovery of new therapeutic options.

Original title of the publication:
Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes;
Nature Genetics, doi:10.1038/ng.3130

Silke Jakobi | idw - Informationsdienst Wissenschaft
Further information:
http://www.hih-tuebingen.de

Further reports about: Febrile HIH Hirnforschung Neurology Zebrafish klinische Hirnforschung methods mutations

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>