Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights uncovered into Prader-Willi syndrome

15.06.2016

A study published in the journal Human Molecular Genetics by researchers at Children's Hospital Los Angeles (CHLA) provides novel insights into the brain mechanisms underlying the insatiable hunger and subsequent obesity in patients with Prader-Willi syndrome.

Prader-Willi syndrome (PWS) is a rare genetic disease characterized by hyperphagia - a chronic feeling of hunger that, coupled with a metabolism that utilizes drastically fewer calories than normal, often leads to excessive eating and obesity in patients with the disease.


Neurons in the hypothalamus develop abnormally in Prader-Willi Syndrome.

Credit: Bouret Lab at Children's Hospital Los Angeles

It affects approximately 1 in 25,000 births about 350 to 400,000 individuals worldwide, and is recognized as the most common genetic cause of life-threatening childhood obesity.

Although much attention has been focused on the metabolic and behavioral outcomes of PWS, scientists still knew relatively little about the consequences of PWS on development of appetite-related brain pathways in the hypothalamus.

This portion of the brain develops during neonatal life under the influence of both environmental and genetic factors. It has been suggested that, due to its importance in the control of eating and energy balance, early impairments of hypothalamic development may result in lifelong metabolic dysregulation.

"Our goal was to characterize the development of brain circuits involved in appetite regulation, using a mouse model for Prader-Willi syndrome. We specifically focused on the hypothalamus because it is the brain region critical for regulation of homeostatic processes such as feeding," said lead author Sebastien Bouret, PhD, a member of The Saban Research Institute's Developmental Neuroscience Program and an associate professor of Pediatrics at the Keck School of Medicine of the University of Southern California (USC).

Bouret and colleagues found that mice lacking Magel2, one of the genes responsible for PWS, display abnormal development of the brain connections that normally trigger satiation, telling the body it has gotten enough to eat. They also report that these neurodevelopmental defects are unlikely to involve endocrine factors - hormones that regulate things like metabolism, growth and development. Rather, the gene Magel2 itself appears to have a direct effect on axonal growth.

Based on previous findings showing a pivotal role for the metabolic hormones leptin and ghrelin in hypothalamic development, the scientists measured their levels in Magel2 knockout mice, comparing them to control mice. They found that the knockout mice had normal levels of leptin and ghrelin, suggesting that the loss of Magel2 alone leads to the disruption of hypothalamic feeding circuits, an effect independent of the effects of those metabolic hormones.

###

Additional contributors to the study include first author Julien Maillard, Children's Hospital Los Angeles and INSERM, Jean-Pierre Aubert Research Center, University Lille, France; Soyoung Park, Sophie Croizier and Joshua H. Cook, Children's Hospital Los Angeles; Charlotte Vanacker and Vincent Prevot, INSERM; and Maithé Tauber, INSERM and Children's Hospital, Toulouse, France.

This work was supported by the Foundation for Prader-Willi Research, the National Institutes of Health (Grants R01DK84142, R01DK102780, and P01ES022845), the United States Environment Protection Agency (Grant RD83544101), and the EU FP7 integrated project.

About Children's Hospital Los Angeles

Children's Hospital Los Angeles has been named the best children's hospital on the West Coast and among the top five in the nation for clinical excellence with its selection to the prestigious U.S. News & World Report Honor Roll. Children's Hospital is home to The Saban Research Institute, one of the largest and most productive pediatric research facilities in the United States. Children's Hospital is also one of America's premier teaching hospitals through its affiliation since 1932 with the Keck School of Medicine of the University of Southern California. For more information, visit CHLA.org or visit our blog at ResearCHLAblog.org.

Debra Kain | EurekAlert!

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>