Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence: How amino acid cysteine combats Huntington's disease

27.07.2016

Study clarifies tie between cysteine deficiency and Huntington's disease

Researchers at Johns Hopkins Medicine report they have identified a biochemical pathway linking oxidative stress and the amino acid cysteine in Huntington's disease. The findings, described in last week's issue of the Proceedings of the National Academy of Sciences, provide a mechanism through which oxidative stress specifically damages nerve cells in Huntington's disease, an inherited and fatal neurodegenerative disorder.


This is an image of a rodent neuron shown in green.

Credit: Gerry Shaw via Wikimedia

Because cysteine deficiency and oxidative stress have been linked to other diseases, such as Alzheimer's disease, arthritis, cardiovascular disease, AIDS and cancer, the investigators say these findings may facilitate therapeutic strategies for many serious conditions.

Researchers Juan Sbodio, Ph.D.; Solomon Snyder, M.D., Ph.D., D.Sc.; and Bindu Paul, Ph.D., all of the Johns Hopkins University School of Medicine's Solomon H. Snyder Department of Neuroscience, say that while there are many ways human cells regulate oxidative stress, those involving cysteine play a central role. "If you deplete cysteine, you will affect a majority of these antioxidant defenses," says Paul.

The researchers' past experiments in mice, published in the May 2014 issue of Nature, showed that the protein responsible for making cysteine, cystathionine gamma-lyase (CSE), is depleted in HD. When amino acids levels are low, normal cells will activate CSE using a protein called activating transcription factor 4 (ATF4).

ATF4 recognizes the DNA sequences that code for proteins involved in amino acid synthesis, including CSE, and tell the cell to start up the cysteine production line for protein synthesis and generation of other protective molecules derived from cysteine. While cells deficient in cysteine can use alternate pathways for a short time, such cells are eventually overwhelmed by oxidation and die. In this study, researchers discovered that ATF4 is disrupted in cells with Huntington's disease, affecting cysteine production.

To characterize this pathway, researchers grew both healthy control brain cells and brain cells derived from mice with Huntington's disease under low cysteine conditions. They found that while the healthy cells increased the activity of ATF4 under low cysteine conditions, they could not detect ATF4 in the cells from mice with Huntington's disease.

This effect was unique to cysteine: When the researchers grew cells in conditions depleted of other amino acids, ATF4 levels were normal in both control and Huntington's cells. "That intrigued us, and we wondered if elevated oxidative stress would affect the response of ATF4 because of cysteine's role in cellular defense," Paul says.

To test this, the researchers induced oxidative stress in healthy cells by exposing them to hydrogen peroxide, a strong oxidizing agent, and then cutting off their cysteine supply. Under these conditions, the cells' expression of ATF4 was greatly reduced. Conversely, when Huntington's cells were grown in cysteine-depleted conditions but given an antioxidant, vitamin C, the cells regained their ability to create ATF4 and make their own cysteine.

"These findings implicate a vicious cycle where low levels of cysteine cause oxidative stress, which leads to decreased cysteine levels, therefore creating more oxidative stress, further slowing cysteine production," says Sbodio. The researchers' previous studies showed that supplementing cysteine in the diets of mice exhibiting Huntington's disease delays the progression of the disease's symptoms. The present study reveals the mechanisms through which cysteine is regulated and how oxidative stress affects this system.

Paul and her colleagues note that antioxidants have long been noted as beneficial for promoting health, but they caution that while antioxidants can mitigate disease symptoms in the lab, much more information on cysteine's role in the body is needed before researchers can confirm its therapeutic value. In fact, the researchers pointed out that supplementing with too much cysteine could be harmful. Paul says that for some conditions, there may be benefits, but people should "always consult their doctor before beginning any supplement. We don't want patients to self-medicate."

###

This study was funded by grants from the National Institute of Mental Health (MH18501) and the CHDI Foundation.

Rachel Butch | EurekAlert!

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>