Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries in age-related macular degeneration revealed in industry and academia

12.12.2014

Insilico Medicine along with scientists from Vision Genomics and Howard University shed light on AMD disease, introducing the opportunity for eventual diagnostic and treatment options.

The scientific collaboration between Vision Genomics, Inc., Howard University, and Insilico Medicine, Inc., has revealed encouraging insight on the AMD disease using an interactome analysis approach. Resources such as publicly available gene expression data, Insilico Medicine's original algorithm OncoFinderTM, and AMD MedicineTM from Vision Genomics allowed discovery of signaling pathways activated during AMD disease.

"We are thrilled to collaborate with Alex Zhavaronkov and Evgeny Makarev, and their team at InSilico Medicine. Big Data analysis is part of the future of medicine, and with our technique of signaling pathway activation analysis, we will decipher the genetic network alterations that lead to age-related macular degeneration (AMD), and eventually human aging itself", said Antonei Benjamin Csoka, PhD, CEO of Vision Genomics, LLC, and Assistant Professor at Howard University.

The research publication titled "Pathway activation profiling reveals new insights into Age-related Macular Degeneration and provides avenues for therapeutic interventions" was accepted by one of aging research's top-rated journals "Aging", detailing these findings and methodology. This study not only validates the efficacy of interactome analysis within aging, but also allows the investigation of cellular populations within AMD models.

"We are happy to collaborate with Antonei Benjamin Csoka's teams at both Vision Genomics and Howard University on this exciting project. Coupling Big Data with advanced signaling pathway activation analysis may help find new therapeutic approaches for age-related macular degeneration (AMD), a disease that holds many keys to understanding human aging", said Evgeny Makarev, PhD, Director of Aging Research at Insilico Medicine.

On December 9th Insilico Medicine, Inc announced the appointment of 2013 Nobel Laureate in Chemistry, Michael Levitt, to its Scientific Advisory Board. Dr. Levitt's background in computational modeling focused on understanding protein folding processes and molecular interactions, may turn to be extremely valuable for compound discovery related to AMD and other age-related diseases.

The concept utilized by Insilico Medicine involves identifying the difference between several signaling states on a tissue-specific level, be it health and disease, or young and old, and evaluating a large number of drugs and drug combinations that can modulate the difference using advanced parametric and machine-learned algorithms.

"To create more value from our predictions we will need to identify compounds that are even more effective than top-scoring drugs and that would require multi-scale modeling of macromolecules, the field pioneered by Dr. Michael Levitt ", said Alex Zhavoronkov, PhD, CEO of Insilico Medicine, Inc. Insilico Medicine continues to be represented from top institutions, including Stanford University, Johns Hopkins University, and New York University. With this broad range of expertise, Insilico and its collaborators will pursue AMD disease further and utilize the newly discovered activated pathways as a foundation.

About Insilico Medicine

Insilico Medicine is a Baltimore-based company utilizing advances in genomics and big data analysis for in silico drug discovery and drug repurposing for aging and age-related diseases. The company uses the GeroScope™ and OncoFinder™ packages for aging and cancer research. Through internal expertise and extensive collaborations with brilliant scientists, institutions, and highly credible pharmaceutical companies, Insilico Medicine seeks to discover new drugs and drug combinations for personalized preventative medicine.

For more information on Insilico Medicine, Inc. please visit http://www.insilicomedicine.com

Please contact:

Michael Petr
Market Research Associate
michael.petr@insilicomedicine.com

Michael Petr | EurekAlert!

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>