Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New combination treatment strategy to 'checkmate' glioblastoma

11.05.2015

Three different classes of anti-cancer drugs work synergistically against brain tumors

Therapies that specifically target mutations in a person's cancer have been much-heralded in recent years, yet cancer cells often find a way around them. To address this, researchers at University of California, San Diego School of Medicine and Moores Cancer Center identified a promising combinatorial approach to treating glioblastomas, the most common form of primary brain cancer.


This image showsn normal cell dividing (left) and stressed cancer cell dividing (right). PLK1 inhibitors stress cancer cells, making them easier to kill.

Credit: UC San Diego Health System

The study, published May 5 by Oncotarget, demonstrates that a mouse model of glioblastoma and human glioblastoma tissue removed from patients and cultured in the lab can be effectively treated by combining three classes of anti-cancer drugs: a drug that targets a cancer mutation in the Epidermal Growth Factor Receptor (EGFR) gene, a drug that increases stress in cancer cells and a drug that damages cancer cell DNA.

"Developing therapies against glioblastoma is like a chess game. For each therapy administered, or move, by the physician, the cancer makes a counter-move," said senior author Clark Chen, MD, PhD, associate professor of neurosurgery and vice-chair of Research and Academic Development at UC San Diego.

In up to 50 percent of glioblastomas, mutations in the EGFR gene render cancer cells insensitive to growth regulation by environmental cues, allowing them to grow uncontrollably. Yet highly specific EGFR inhibitors are not particularly effective against glioblastomas with EGFR mutations.

"When glioblastoma cells are treated with EGFR inhibitors, they turn on another receptor to bypass the need for EGFR," said Chen. "Any hope of an effective treatment requires a combination of moves strategically designed for a checkmate."

To develop such a strategy, Chen and his group turned to PLK1, a protein that regulates stress levels within glioblastoma cells and is essential for their survival. Chen and his group found that glioblastoma cells that developed resistance to EGFR inhibitors remain universally dependent on this protein.

In mouse models of glioblastoma and in explants of human glioblastoma, singular treatment with an EGFR inhibitor, a PLK1 inhibitor or the current standard of care drug (a DNA-damaging agent), each temporarily halted glioblastoma growth. But, like the human disease, the tumor eventually grew back. However, no detectable tumor recurrence was observed when a combination of all three classes of drugs was administered. The treated mice tolerated this combination regimen without showing significant side-effects.

"It is often assumed that if we find the cancer-causing mutation and inhibit the function of that mutation, we will be able to cure cancer," said study co-author Bob S. Carter, MD, PhD, chief of neurosurgery at UC San Diego. "Our study demonstrates that the reality is far more complex. Our results provide a blueprint for how to leverage fundamental biologic concepts to tackle this challenging complexity."

The three drugs administered to mice in this study were: BI2536, a PLK1 inhibitor; Gefitnib, an EGFR inhibitor; and TMZ, the standard-of-care chemotherapy for glioblastoma. The study authors note that while the safety or side effects of treating human patients will all three drugs is unknown, all are individually well-tolerated in humans. The clinical safety profiles of Gefitinib and TMZ are well-established for glioblastoma patients and PLK1 inhibitors have so far been well-tolerated in clinical trials (one has advanced to Phase III clinical trials for acute myeloid leukemia).

###

Co-authors of this study include Ying Shen, UC San Diego and Shanghai Jiao Tong University; Jie Li, Diahnn Futalan, Tyler Steed, Jeffrey M Treiber, and Zack Taich, UC San Diego; Masayuki Nitta, Dana-Farber Cancer Institute; Deanna Stevens, Jill Wykosky, Frank B. Furnari, Webster K. Cavenee, and Arshad Desai, UC San Diego and Ludwig Cancer Research; Hong-Zhuan Chen, Shanghai Jiao Tong University; Oren J. Becher, Duke University Medical Center; Richard Kennedy, Queen's University of Belfast; Fumiko Esashi, University of Oxford; and Jann N. Sarkaria, Mayo Clinic.

This research was funded, in part, by the Sontag Foundation, Burroughs Wellcome Foundation, Kimmel Foundation, Doris Duke Foundation and Forbeck Foundation.

Media Contact

Heather Buschman
hbuschman@ucsd.edu
619-543-6163

 @UCSanDiego

http://www.ucsd.edu 

Heather Buschman | EurekAlert!

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>