Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach doubles 3-D resolution of fluorescence microscopy

12.08.2016

Capturing multiple views simultaneously produces more detailed perspectives of bacteria and living cells

Researchers have developed a new fluorescence microscopy approach that significantly improves image resolution by acquiring three views of a sample at the same time. Their new method is particularly useful for watching the dynamics of biological processes, which can provide insights into how healthy cells work and what goes wrong when diseases occur.


By adding a third objective lens, researchers were able to capture previously neglected fluorescence, improving image resolution in three dimensions. The schematic on the right shows the new approach as applied to a type of light-sheet microscopy.

Credit: Yicong Wu, National Institute of Biomedical Imaging and Bioengineering

In The Optical Society's journal for high impact research, Optica, the researchers apply their multi-view technique in two microscopy modes and use it to image several types of biological samples. For both modes, the researchers demonstrated a volumetric resolution of up to 235 by 235 by 340 nanometers, double the volumetric resolution of traditional methods.

Biologists commonly use fluorescence microscopy to study everything from embryo development to the intricate processes within living cells. However, most fluorescence microscopy methods fail to capture much of the fluorescence emitted from the sample, which not only represents lost information but also reduces image resolution.

"In our work, we captured this previously neglected fluorescence and fused it with the traditional views used in conventional microscopy," said Yicong Wu, staff scientist at the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Maryland, USA, and first author of the Optica paper. "This increases resolution without compromising either temporal resolution or adding additional light to the sample."

Adding a third objective lens

The new multi-view approach helps improve a technique the researchers previously developed called dual-view plane illumination microscopy (diSPIM). Scientists around the world employ commercial versions of diSPIM, which uses a thin sheet of light and two objectives lenses to excite and detect fluorescence.

"The main motivation of this new research was that the resolution in diSPIM was limited by the numerical aperture of the upper lenses, and fluorescence emitted in the direction of the coverslip is not captured," explained Hari Shroff, leader of the research team. "We reasoned that if we could simultaneously image this neglected signal by adding a higher numerical aperture lens that acquired the bottom view, then we could boost the lateral resolution."

In the improved diSPIM microscopy technique, each light sheet is tilted at a 45-degree angle relative to an additional lower objective lens. In its current design, the researchers swept the lower objective's plane of focus through the sample to image the previously unused fluorescence, but this mechanical scanning could be replaced with a passive optic in future versions of the microscope. Using the multi-view approach improved the lateral, or horizontal, resolution of diSPIM to about 235 nm.

The researchers also implemented the new technique in wide-field mode by scanning the three objectives through a sample simultaneously to produce three individual 3D views. With this mode, the multi-view method improved axial, or Z-axis, resolution, to about 340 nm, an increase of 45%.

Merging three views into one

Whether acquired in wide-field or light-sheet mode, the three views must be precisely aligned and also cleaned up with an image processing technique known as deconvolution.

"One helpful trick was to deconvolve each view first to increase image quality, contrast, and so forth, which then allowed accurate registration of the three views," said Wu. "In wide-field mode, we further aided registration of the images by adding fluorescent beads to the samples as point of reference." He added that collaboration with Patrick La Riviere's research group at the University of Chicago was essential in thinking through and testing this deconvolution method.

The researchers demonstrated the multi-view technique by imaging biological samples and were able to see detailed features not typically observable. For example, the wide-field multi-view microscope clearly resolved the spherical protein shell present when Bacillus subtilis forms a spore and also allowed the researchers to observe the dynamics of organelles inside cells. In light-sheet mode, they clearly saw the 3D dynamic nature of tiny protrusions on living white blood cells when they acquired 150 triple-view images over 40 minutes.

Although other methods have been used to capture multiple views sequentially, this new method improves spatial resolution without introducing additional illumination or compromising temporal resolution relative to conventional imaging. This is important because additional light can be damaging, even deadly to living cells, and the temporal resolution is needed to capture fast processes.

The research team is now exploring additional biological applications for the new system and is working to extend the method to other microscope modalities, such as confocal microscopy.

###

Paper: Y. Wu, P. Chandris, P.W. Winter, E.Y. Kim, V. Jaumouillé, A. Kumar, M. Guo, J.M. Leung, C. Smith, I. Rey-Suarez, H. Liu, C.M. Waterman, K.S. Ramamurthi, P. LaRiviere, H. Shroff, "Simultaneous multi-view capture and fusion improves spatial resolution in wide-field and light-sheet microscopy," Optica, 3, 8, 897 (2016). DOI: 10.1364/optica.3.000897.

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 40 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contact

Rebecca Andersen
RAndersen@osa.org
202-416-1443

 @opticalsociety

http://www.osa.org 

Rebecca Andersen | EurekAlert!

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>