Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrons identify critical details in bacterial enzyme implicated in gastric cancer

02.02.2017

Neutron analysis at the Department of Energy's Oak Ridge National Laboratory is helping researchers better understand a key enzyme found in a bacterium known to cause stomach cancer.

Understanding the details of this enzyme, and thus the Helicobacter pylori bacteria's metabolism and biological pathways, could be central to developing drugs that act against H. pylori, but that do not attack the stomach's useful bacteria.


A nuclear density map of the bacterial enzyme HpMTAN's active site reveals the locations of the hydrogen atoms, including the unexpected observation of a hydrogen ion positioned midway between adenine and D198 residue.

Credit: ORNL

"Most drugs, including common antibiotics, use a generalized mechanism to bind to their targets, which, in turn, eliminates the good bacteria you need to stay healthy, as well as the bad bacteria," said Andrey Kovalevsky, one of the instrument scientists at the ORNL High Flux Isotope Reactor and coauthor of this research published in the Proceedings of the National Academy of Sciences.

"By understanding how this enzyme functions, we can get clues about how to fine-tune a drug to recognize only a specific target, which would eliminate some of the side effects that cause so many problems for people when a more generalized approach to kill bacteria is used."

Kovalevsky was part of a team led by Donald Ronning at the University of Toledo who used HFIR's IMAGINE instrument to study the metabolism of a bacterial enzyme known as H. pylori 5'-methylthioadenosine nucleosidase, or HpMTAN, which plays a key function in H. pylori. This bacterium garnered international attention in 2005 when a team of researchers was awarded the Nobel Prize in Medicine for determining its role as a "bacterial culprit" in the development of gastric conditions, including ulcers, chronic gastritis and cancer.

Ronning's team focused on H. pylori's use of a unique biosynthetic pathway to synthesize vitamin K2, which aids in the electron transfer processes, or chemical reactions, of all organisms. HpMTAN is one specific enzyme that functionbs within this unique pathway and provides the promising specific target or point of attack for new medications. Vitamin K2 acts to expedite the HpMTAN enzyme's interaction with other macromolecules, including the very bacterium that causes an array of gastric health issues.

Neutron crystallography at HFIR's IMAGINE instrument allowed researchers to accurately visualize the positions and predict the movements of hydrogen atoms in HpMTAN, especially those involved in the critical stages when the enzyme binds to its substrate and then proceeds with the catalytic reaction.

For a comprehensive view on the interatomic interactions, Ronning's team examined four different HpMTAN neutron structures to observe how ligands, or molecules that bind via noncovalent bonding, interacted with their respective enzyme sites.

"This knowledge will inform future drug design efforts by taking advantage of the known orientation of the nucleophilic water molecule and its intimate interactions with the neighboring components of the enzyme," Ronning said.

While Ronning qualified that the development of a new drug to treat gastric issues will take several years and continued study of the enzyme's behavior, he said that his team's research confirms HpMTAN's potential for use and this knowledge could, in fact, speed up the creation of such a medicine.

###

This research was partially funded through the National Institute of Health's National Institute of Allergy and Infectious Disease and a cooperative agreement with the National Aeronautics and Space Administration's Center for the Advancement of Science in Space. The work was conducted in part at the Heinz Maier-Leibnitz Research Neutron Source with the Technical University of Munich, both in Munich, Germany, and at ORNL's High Flux Isotope Reactor, a DOE Office of Science User Facility.

UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Media Contact

Katie Bethea
betheakl@ornl.gov
865-576-8039

 @ORNL

http://www.ornl.gov 

Katie Bethea | EurekAlert!

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>